Preliminary Examination

September, 1993

Differential Geometry

Do Six of the following problems

Problem 1. (Space curves)
(a) Define the curvature of a space curve.
(b) Let $\mathbf{r}(t) = (x(t), y(t), z(t))$ be a nondegenerate space curve. Show that the curvature at t is given by

$$\kappa(t) = \frac{|\mathbf{r}_t \times \mathbf{r}_{tt}|}{|\mathbf{r}_t|^3}.$$

Problem 2. (General manifolds) Define the following terms:
(a) Differentiable manifold:
(b) Tangent bundle and vector field:
(c) Parallel translation:
(d) Covariant differentiation.

Problem 3. (Gaussian and mean curvatures)
(a) The Poincaré metric on a unit disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ is given by the formula

$$ds^2 = \frac{4(dx^2 + dy^2)}{(1 - x^2 - y^2)^2}.$$

Compute the Gaussian curvature of D with this metric.
(b) The helicoid H can be parametrized as

$$(u, v) \rightarrow (v \cos u, -v \sin u, bu), \quad (u, v) \in \mathbb{R}^2.$$

(b is a nonnegative constant). Compute the first and second fundamental forms and the mean curvature of H.

Problem 4. (Lie groups) Let G be a Lie group.
(a) Show that there is a unique connection ∇ such that for all left-invariant vector fields X and Y we have $\nabla_X Y = [X, Y]$.
(b) Compute the torsion and curvature tensors of the connection ∇.
(c) Show that under the connection given in (a) every one-parameter subgroup of G is a geodesic, i.e., its tangent vector field is parallel along the curve.
(d) Can you think of other natural connections of G with the property stated in (c)?

Problem 5. (Polar coordinates) Let S be a two dimensional manifold.

(a) Define geodesic polar coordinates (r, θ) in a neighborhood of a point $o \in M$:
(b) (Gauss' lemma) Show that in the polar coordinates the Riemannian metric can be written as

$$ds^2 = dr^2 - G(r, \theta)^2 d\theta^2,$$

where $G(r, \theta)$ is a smooth function on $[0, c] \times S^1$ such that $G(0, \theta) = 0$ and $G_r(0, \theta) = 1$ (S^1 stands for the unit circle):

(c) Show that the gaussian curvature at (r, θ) is given by

$$K(r, \theta) = \frac{G_{rr}(r, \theta)}{G(r, \theta)}.$$

(d) Show that if the gaussian curvature is identically equal to zero in a neighborhood of o, then S is locally isometric to R^2 at o.

Problem 6. (Gauss-Bonnet theorem)

(a) State a version of Gauss-Bonnet theorem:
(b) Show that for any geodesic triangle on the unit sphere S in R^3 the sum of the three angles is greater than π.

Problem 7. (Differential forms)

(a) State definitions of differential forms, closed forms, and exact forms:
(b) State a version of Stokes' theorem for differential forms on manifolds:
(c) Show that on R^2 every closed 1-form is exact:
(d) Show that on the 2-sphere S^2, every closed 1-form is exact.

Problem 8. (Riemannian connection) Let M be a Riemannian manifold.

(a) If ∇ and $\tilde{\nabla}$ are two connections on M, and define for two vector fields X and Y:

$$S(X,Y) = \nabla_X Y - \tilde{\nabla}_X Y.$$

Show that S is a tensor of type $(1,2)$:

(b) Show that there is at most one connection on M which is compatible with the Riemannian metric and is torsion-free.