Geometry Prelim Exam
Sep. 16, 1998

Work SIX of the following problems INCLUDING AT LEAST ONE from each of the groups 1-3, 4-6, 7-9, 10-12. Please list the six you want graded on the front of your blue book

1. Define chart, atlas and manifold. Define C^∞ function from one manifold to another and define the derivative of such a map. Give an example of a C^∞ homeomorphism whose inverse fails to have a derivative at some point.

2. Define submanifold, immersion and embedding. Give an example of an immersion of a manifold which is not an embedding.

3. (a) Define transversal intersection of two submanifolds.
 (b) Suppose $A : \mathbb{R}^n \to \mathbb{R}^n$ is a linear map and let W be the graph of A, i.e. $W = \{(v, A(v)) : v \in \mathbb{R}^n\}$. Let $V = \mathbb{R}^n \times \{0\} \subset \mathbb{R}^n \times \mathbb{R}^n$. Prove that V is transverse to W in $\mathbb{R}^n \times \mathbb{R}^n$ if and only if A is an isomorphism.

4. (a) Define homotopy of two continuous maps.
 (b) Suppose $f(t)$ is a loop in (X, x_0), i.e. a continuous function $f : [0, 1] \to X$ with $f(0) = f(1) = x_0$. Let $g : [0, 1] \to [0, 1]$ be a continuous function satisfying $g(0) = 0$ and $g(1) = 1$. Prove that $f(g(t))$ is another loop in (X, x_0), and that it is homotopic to the loop $f(t)$ relative to the base point x_0.

5. (a) Define critical point and critical value of a smooth function. State Sard’s Theorem. (b) Prove that if $\dim M < \dim N$ and $f : M \to N$ is C^∞ then f is not onto. In particular there are no C^∞ space filling curves.

6. (a) Define differential k-form.
 (b) Let $d : \Omega^k(M) \to \Omega^{k+1}(M)$ be the exterior derivative. Prove that $d \circ d$ is identically zero.
 (c) Give an example of a one-form ω on \mathbb{R}^4 such that $d\omega \wedge d\omega$ is non-zero.

7. (a) Define affine connection, symmetric affine connection and affine connection compatible with a metric.
 (b) Let $\nabla_X Y = (X(g_1), X(g_2), X(g_3))$ if $Y = (g_1, g_2, g_3)$ is a vector field on \mathbb{R}^3. Prove that ∇ is a symmetric affine connection compatible with the standard metric on \mathbb{R}^3.

8. (a) Define the Weingarten map for a surface M^2 in \mathbb{R}^3.
 (b) Consider the surface $z = 2x^2 - y^2$ in \mathbb{R}^3. Find the Gaussian curvature, the principal curvatures and the principal directions at the point $(0, 0, 0)$ on this surface.

9. (a) State the first and second Cartan Structure equations. (b) Prove one of them.