Preliminary Exam - Differential Geometry (D41/D43, Spring 99/00)

Do all problems.

Problem 1. (a) Define the universal cover of connected differentiable manifold. (b) Show that the universal cover of the unit circle \(\{ e^{i\theta} : 0 \leq \theta < 2\pi \} \) is the real line \(\mathbb{R} = (-\infty, \infty) \).

Problem 2. (a) Define the orientability of a manifold. (b) Show that if a differentiable manifold \(M \) is covered by two charts \(U \) and \(V \) whose intersection \(U \cap V \) is connected, then \(M \) is orientable.

Problem 3. (a) Define the tangent space \(T_x M \) of a differentiable manifold \(M \) at a point \(x \in M \). (b) Show that \(T_x M \) has the same dimension as \(M \).

Problem 4. (a) Define the torsion and curvature of a connection. (b) Define the Christoffel symbols \(\Gamma^k_{ij} \) of a connection. (c) Show that the connection is torsion-free if and only if \(\Gamma^k_{ij} = \Gamma^k_{ji} \).

Problem 5. (a) Define the exterior derivative of a differential form, either invariantly or in local coordinates. (b) State Stoke’s theorem.

Problem 6. Let \(M \) be a noncompact Riemannian manifold and \(\{ O_n \} \) a sequence of relative compact open subset of \(M \) such that \(\overline{O}_n \subseteq O_{n+1} \) and \(\cup_{n=1}^{\infty} O_n = M \). Define

\[
 d(x) = \lim_{n \to \infty} d(x, M \setminus O_n), \quad x \in M,
\]

where \(d(x, A) \) is the Riemannian distance from \(x \) to set \(A \). (a) Show that either \(d(x) = \infty \) for all \(x \in M \) or \(d(x) < \infty \) for all \(x \in M \). (b) if \(d(x) = \infty \) for all \(x \in M \), then \(M \) is complete.

Problem 7. State and prove Gauss’ lemma about the geodesic polar coordinates of a Riemannian manifold.