Do 2 of 3 problems from Part A and 4 of 6 problems from Part B.

Be sure to indicate which problems you are submitting.

Part A

1. Define chart, atlas and manifold. Define C^{∞} function from one manifold to another and define the derivative of such a map. Give an example of a C^{∞} homeomorphism whose inverse fails to have a derivative at some point.

2. (a) Define transversal intersection of two submanifolds.

(b) Suppose $A : \mathbb{R}^n \to \mathbb{R}^n$ is a linear map and let W be the graph of A, i.e. $W = \{(v, A(v)) \in \mathbb{R}^n \times \mathbb{R}^n \mid v \in \mathbb{R}^n\}$. Let $V = \mathbb{R}^n \times \{0\} \subset \mathbb{R}^n \times \mathbb{R}^n$. Prove that V is transverse to W in $\mathbb{R}^n \times \mathbb{R}^n$ if and only if A is an isomorphism.

3. (a) Define homotopy of two continuous maps.

(b) Suppose f(t) is a loop in (X, x_0) , i.e. a continuous function $f: [0, 1] \to X$ with $f(0) = f(1) = x_0$. Let $g: [0, 1] \to [0, 1]$ be a continuous function satisfying g(0) = 0 and g(1) = 1. Prove that f(g(t)) is another loop in (X, x_0) , and that it is homotopic to the loop f(t) relative to the base point x_0 .

Part B

4. Prove that the boundary of the Möbius Band is a not a retract of the Möbius Band.

5. Let X be the quotient space obtained by identifying the three vertices of a 2-simplex to a single point. Find the homology groups $H_k(X; \mathbf{Z})$ for all k.

6. For each of the following two statements, tell whether the statement is True or False. In each case, support your answer.

(a) There exists a map $f: S^2 \times S^2 \longrightarrow S^4$ such that $f_*: H_4(S^2 \times S^2; \mathbb{Z}) \longrightarrow H_4(S^2; \mathbb{Z})$ is an isomorphism.

(b) There exists a map $g: S^4 \longrightarrow S^2 \times S^2$ such that $g_*: H_4(S^2; \mathbb{Z}) \longrightarrow H_4(S^2 \times S^2; \mathbb{Z})$ is an isomorphism.

7. Show that $\mathbf{R}P^4 \times S^4$ and $\mathbf{R}P^8 \bigvee S^4$ do not have the same homotopy type.

8. Assume that $f: X \longrightarrow Y$ is a covering map, where X and Y are Hausdorff spaces and $X = D^2$. Prove that f is a homeomorphism.

9. Let K be the Klein Bottle and let $P = \mathbf{R}P^3$, the 3-dimensional real projective space.

(a) What are $H_k(P \times K; \mathbf{Z})$, for all k?

(b) What are $H^k(P \times K; \mathbb{Z}/2\mathbb{Z})$, for all k?