Problem A1. Show that
\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(1+n)}} \leq \pi. \]
Problem A2. Find the following infinite product:

\[P = \prod_{n=1}^{\infty} \left(1 + \left(\frac{1}{7} \right)^{2n} \right) \]

Write the result as a fraction \(P = \frac{a}{b} \) in least terms.
Problem A3. Let S be a set with even number of elements, and $f : S \to S$ a map of S into itself such that $f \circ f : S \to S$ is the identity map. Show that the set of the fixed points has even number of elements.
Problem A4. Let \(f: \mathbb{R} \to \mathbb{R} \) a continuous function without fixed points, i.e., there is no \(x \in \mathbb{R} \) such that \(f(x) = x \). Let \(n \) be a positive integer. Prove that \(f^n = f \circ f \circ \cdots \circ f \) has no fixed points either.
Problem A5. The Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, \ldots are defined as \(F_0 = 0, \quad F_1 = 1 \) and \(F_n = F_{n-1} + F_{n-2} \) (for \(n \geq 2 \)). The *digital root* of a non-negative integer is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached. For example, the digital root of 65,536 is 7, because \(6 + 5 + 5 + 3 + 6 = 25 \) and \(2 + 5 = 7 \). Prove that there are integers \(a, b \), with \(a > 0 \) and \(b \geq 0 \), such that all Fibonacci numbers of the form \(F_{an+b} \), \(n = 0, 1, 2, 3, \ldots \), have the same digital root.
Problem A6. Let a, b, c three positive real numbers prove:

$$\sqrt{a^2 + 1} + \sqrt{b^2 + 4} + \sqrt{c^2 + 9} \geq 2\sqrt{3}\sqrt{a + b + c}.$$