Algebra Preliminary Examination

Northwestern University, September 2017

Do all of the following questions. Each question is worth 0.5 points.

Question 1. Let \(\alpha \) be a root of \(X^6 + X^3 + 1 \). Find all homomorphisms \(\mathbb{Q}(\alpha) \rightarrow \mathbb{C} \) of fields.

Question 2. Let \(S_3 \) be the symmetric group on 3 elements, and \(k \) an algebraically closed field of characteristic zero.
 1. Find all conjugacy classes of \(S_3 \).
 2. Find the dimension and the multiplicity in the regular representation of all irreducible representations of \(S_3 \) over \(k \).
 3. Write down the character table of \(S_3 \) over \(k \).

Question 3. Let \(K \) be a field and let \(M_3(K) \) denote the \(K \)-algebra of 3-by-3 matrices. Let \(B \) denote the subalgebra of \(M_3(K) \) of upper-triangular matrices. Determine whether \(B \) is semisimple.

Question 4. Put \(R = \mathbb{F}_q[X,Y]/\langle X^qY - XY^q \rangle \) where \(q \) is a power of prime. Let \(x,y \) be the image of \(X,Y \) in \(R \), respectively. Show that for every \(a \in \mathbb{F}_q \), \(R \) is not a finitely generated module over \(\mathbb{F}_q[y - ax] \).

Question 5. Let \(G \) be a group and \(H \) a subgroup of finite index. Show that there exists a normal subgroup \(N \) of \(G \) contained in \(H \) and also of finite index.

Question 6. Let \(R \) be a commutative ring that is a finitely generated \(\mathbb{Z} \)-algebra. Let \(\mathfrak{m} \) be a maximal ideal of \(R \). Show that \(R/\mathfrak{m} \) is a finite field.