PROBLEM SESSION 1

LECTURER: VADIM GORIN TA: EVGENI DIMITROV

July 12, 2018

The following session elaborates Lecture 2. The focus is on the relationship between Schur sym-
metric polynomials and uniform lozenge tilings of trapezoidal domains.

1. PRELIMINARIES

In this section we gather some basic facts about Schur symmetric polynomials. We refer the
reader to [1, Chapter 1] for a more detailed exposition, which goes well beyond what we will need.

A signature of length N is a sequence A = (A1, A2, -+, An) € ZY of integers such that \; >
Ay > -+ > Ay. We denote by Yy the set of signatures of length N, which satisfy Ay > 0
(these are sometimes referred to as Young diagrams or partitions). The weight of X\ is given by
Al = A1 + A2 + -+ + An. There is a natural ordering on the space of signatures, called the reverse
lezicographic order, given by

A>p < Jke{l,...,N} such that \; = p;, whenever i < k and A\g > p.

Suppose that we have finitely many variables z1,...,xy. Let 2* = 2" --- 23" be a monomial
and consider its antisymmetrization aq: that is

Go = Z sign(o)o(z*) = Z sign(a)mg‘%l) . --mgéVN),

O‘ESN gESy

where Sy is the group of permutations of N elements and the action of ¢ € Sy on any polynomial is
through permutation of the variables. Observe that a, is skew-symmetric, i.e. o(ay) = sign(o) - aq
and so a, = 0 unless az, ..., an are all distinct. We may thus assume that a; > ao > - > ay >0
and therefore write « = A+ 6, where A\ € Yy and 6 = (N — 1, N — 2,...,1,0). We then have

N—i 1N
g = Ary5 = Zsign(a) o (20 = det [x:.\ﬁN ]Lj_l .
o h

Since ay4s is skew-symmetric it vanishes when x; = z; for any 7 # j and so ay4s is divisible (over
Zlxi,...,xN]) by z; —xj for 1 < ¢ < j < N and consequently by their product, which is the
Vandermonde determinant

H (x; —xj) = det {xfy*j}N = as.

1<i<j<N ni=l
So ayys is divisible by as in Z[z1, ..., zy]| and their quotient
AN
Mj+N—
Uris det [a:ij+ J}
A i,j=1
(1) s/\(acl,...,xN) = =

as H1§i<j§N(37i — ;)

is readily seen to be a symmetric and homogeneous polynomial of degree |A|.
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Definition (1) also makes sense for any A = (A > Ay > -+ > Ay) € ZN | so that the resulting
sx(z1,...,2n) is a symmetric and homogeneous Laurent polynomial of degree |A| = A1 + -+ + An.
Indeed, we have the explicit relationship

3)\+TN(.'I}1, .. .,.%'N) = (1‘1 ce -l"N)T . 8)\(%'1, .. .,xN),

where A+ 7 = (\; +7,--+ , Ay +7) and r € Z.
We end this section with several of useful facts about Schur polynomials.

Fact 1. The set {sx(z1,...,7n) : A € Yy} forms a Z-basis of Z[x1,...,2x]°N =: Ay (the space of
symmetric polynomials with integer coefficients). Another popular basis for Ay is formed by the
monomial symmetric polynomials

m/\(xla' : '7-7/']\/) = Zxa’
summed over all distinct permutations a of A = (A1,...,A\n), where again A ranges over Y y.
Fact 2. The leading (in reverse lexicographic order) monomial in sy is m).

Fact 3. f X = (k,0,...,0) = (k) then sy (71,...,2n) = Zw:k my =: h;, — called the k-th complete
symmetric polynomial.

Fact 4. f A= (1,...,1,0,...,0) = (1¥) then Sam(T1, s TN) = D5 oy, Ty Ty, = Mygky =t e,

k N-k
— called the k-th elementary symmetric polynomial.

2. PROBLEMS

Problem 1. Prove the Weyl dimension formula

Ai—Aj+j5—1

(2) (V) =sa(1,.... )= ][] S
N 1<i<j<N J
by first computing sx(1,q,¢?,...,¢" 1) and then letting ¢ — 1.

Problem 2. Prove the following branching rule for Schur symmetric polynomials

(3) sx(Z1,...,xN) = Zsu(ml,...,:UN_l)x‘]él_W',
PR

where the sum is over u = (u1,...,un—1) such that p3 < Ap < ps < Ao+ < puy—1 < Ay — such
signatures are said to interlace.

Hint: Compute sy(x1,...,2nx_1, 1) directly from (1) and apply properties of determinants to match
the right side of (3); then use Fact 1 to finish.
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Problem 3. We introduce a coordinate system
on the hexagonal lattice with basis vectors e; and
ey as in Figure 1. Recall from lecture that a trape-
zoidal domain is one that is encoded by an N-tuple
of integers £ = ({1 > ly > -+ > Uy) € ZN — an
example is given in Figure 1.

A tiling of the domain is a cover by lozenges of
three types, given in the right part of Figure 2.
Show that the total number of lozenge tilings is
given by sx(1V), where ¢; = \; + N —i.

Some ideas: Let the centers of the blue lozenges
have coordinates (N, 01 +1/2),...,(N,ln+1/2).
Suppose you place a particle in the center of each
lozenge of Type 1 — so their coordinates in our ba-
sis are (a,b+1/2) with a,b € Z. Try to argue that
there are exactly k particles with first coordinate
k in each tiling. If (k,yf +1/2)..., (k,yf + 1/2)
are the coordinates of particles on k-th column
set )\f = yzk — k + ¢ and convince yourself that
A < A+ (notation from Problem 2). The latter
gives a bijection between tilings and interlacing
sequences of signatures — now use Problem 2.

Type
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FiGurE 1. Example of a trape-
zoidal domain.
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FIGURE 2. Types of lozenges and triangles.
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Problem 4. Prove the famous Macmahon formula (see
https : //en.wikipedia.org/wiki/Plane partition) that gives
the number of tilings of a hexagon of sides A, B,C. Ex-
plicitly, show that it equals

ﬁ ﬁ ﬁ at+bte—1

e iiosier a+b+c—2
Hint: Look at Figure 3.

FiGure 3. Tiling of hexagon.

Problem 5. Take N < min(B,C) and consider the vertical section of the hexagon by the N-th
vertical line from the left. There are precisely N horizontal lozenges on this vertical section. The
positions of these lozenges in a uniformly random tiling form a random N-tuple of ordered integers
£y >l > --- > {y. Prove that the probability distribution on such N-tuples has the form

N
1
(4) (b1, IN) = - I @—e)?]]w,
1<i<j<N i=1
find explicit expressions for Z and w.
Hint: When one fixes the horizontal lozenges along a vertical line, the tiling splits into two: to the

left and to the right of this line. The left and right tilings then can be counted by the same trick as
in Problem 3.
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