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The following session elaborates Lecture 2. The focus is on the relationship between Schur sym-
metric polynomials and uniform lozenge tilings of trapezoidal domains.

1. Preliminaries

In this section we gather some basic facts about Schur symmetric polynomials. We refer the
reader to [1, Chapter 1] for a more detailed exposition, which goes well beyond what we will need.

A signature of length N is a sequence λ = (λ1, λ2, · · · , λN ) ∈ ZN of integers such that λ1 ≥
λ2 ≥ · · · ≥ λN . We denote by YN the set of signatures of length N , which satisfy λN ≥ 0
(these are sometimes referred to as Young diagrams or partitions). The weight of λ is given by
|λ| = λ1 + λ2 + · · ·+ λN . There is a natural ordering on the space of signatures, called the reverse

lexicographic order, given by

λ > µ ⇐⇒ ∃k ∈ {1, . . . , N} such that λi = µi, whenever i < k and λk > µk.

Suppose that we have �nitely many variables x1, . . . , xN . Let xα = xα1
1 · · ·x

αN
N be a monomial

and consider its antisymmetrization aα: that is

aα =
∑
σ∈SN

sign(σ)σ(xα) =
∑
σ∈Sn

sign(σ)xα1

σ(1) · · ·x
αN

σ(N),

where SN is the group of permutations of N elements and the action of σ ∈ SN on any polynomial is
through permutation of the variables. Observe that aα is skew-symmetric, i.e. σ(aα) = sign(σ) · aα
and so aα = 0 unless α1, . . . , αN are all distinct. We may thus assume that α1 > α2 > · · · > αN ≥ 0
and therefore write α = λ+ δ, where λ ∈ YN and δ = (N − 1, N − 2, . . . , 1, 0). We then have

aα = aλ+δ =
∑
σ

sign(σ) · σ(xλ+δ) = det
[
x
λj+N−j
i

]N
i,j=1

.

Since aλ+δ is skew-symmetric it vanishes when xi = xj for any i 6= j and so aλ+δ is divisible (over
Z[x1, . . . , xN ]) by xi − xj for 1 ≤ i < j ≤ N and consequently by their product, which is the
Vandermonde determinant ∏

1≤i<j≤N
(xi − xj) = det

[
xN−ji

]N
i,j=1

= aδ.

So aλ+δ is divisible by aδ in Z[x1, . . . , xN ] and their quotient

(1) sλ(x1, . . . , xN ) :=
aλ+δ
aδ

=
det

[
x
λj+N−j
i

]N
i,j=1∏

1≤i<j≤N (xi − xj)

is readily seen to be a symmetric and homogeneous polynomial of degree |λ|.
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De�nition (1) also makes sense for any λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) ∈ ZN , so that the resulting
sλ(x1, . . . , xN ) is a symmetric and homogeneous Laurent polynomial of degree |λ| = λ1 + · · ·+ λN .
Indeed, we have the explicit relationship

sλ+rN (x1, . . . , xN ) = (x1 · · ·xN )r · sλ(x1, . . . , xN ),

where λ+ rN = (λ1 + r, · · · , λN + r) and r ∈ Z.
We end this section with several of useful facts about Schur polynomials.

Fact 1. The set {sλ(x1, . . . , xN ) : λ ∈ YN} forms a Z-basis of Z[x1, . . . , xN ]SN =: ΛN (the space of
symmetric polynomials with integer coe�cients). Another popular basis for ΛN is formed by the
monomial symmetric polynomials

mλ(x1, . . . , xN ) =
∑

xα,

summed over all distinct permutations α of λ = (λ1, . . . , λN ), where again λ ranges over YN .

Fact 2. The leading (in reverse lexicographic order) monomial in sλ is mλ.

Fact 3. If λ = (k, 0, . . . , 0) = (k) then s(k)(x1, . . . , xN ) =
∑
|λ|=kmλ =: hk � called the k-th complete

symmetric polynomial.

Fact 4. If λ = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
N-k

) = (1k) then s(1k)(x1, . . . , xN ) =
∑

i1<···<ik xi1 · · ·xik = m(1k) =: ek

� called the k-th elementary symmetric polynomial.

2. Problems

Problem 1. Prove the Weyl dimension formula

(2) sλ(1N ) := sλ(1, . . . , 1︸ ︷︷ ︸
N

) =
∏

1≤i<j≤N

λi − λj + j − i
j − i

by �rst computing sλ(1, q, q2, . . . , qN−1) and then letting q → 1.

Problem 2. Prove the following branching rule for Schur symmetric polynomials

(3) sλ(x1, . . . , xN ) =
∑
µ�λ

sµ(x1, . . . , xN−1)x
|λ|−|µ|
N ,

where the sum is over µ = (µ1, . . . , µN−1) such that µ1 ≤ λ1 ≤ µ2 ≤ λ2 · · · ≤ µN−1 ≤ λN � such
signatures are said to interlace.
Hint: Compute sλ(x1, . . . , xN−1, 1) directly from (1) and apply properties of determinants to match
the right side of (3); then use Fact 1 to �nish.
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Problem 3. We introduce a coordinate system
on the hexagonal lattice with basis vectors e1 and
e2 as in Figure 1. Recall from lecture that a trape-
zoidal domain is one that is encoded by anN -tuple
of integers ` = (`1 > `2 > · · · > `N ) ∈ ZN � an
example is given in Figure 1.
A tiling of the domain is a cover by lozenges of
three types, given in the right part of Figure 2.
Show that the total number of lozenge tilings is
given by sλ(1N ), where `i = λi +N − i.

Some ideas: Let the centers of the blue lozenges
have coordinates (N, `1 + 1/2), . . . , (N, `N + 1/2).
Suppose you place a particle in the center of each
lozenge of Type 1 � so their coordinates in our ba-
sis are (a, b+1/2) with a, b ∈ Z. Try to argue that
there are exactly k particles with �rst coordinate
k in each tiling. If (k, yk1 + 1/2) . . . , (k, ykk + 1/2)
are the coordinates of particles on k-th column
set λki = yki − k + i and convince yourself that
λk � λk+1 (notation from Problem 2). The latter
gives a bijection between tilings and interlacing
sequences of signatures � now use Problem 2.

Figure 1. Example of a trape-
zoidal domain.

Figure 2. Types of lozenges and triangles.
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Problem 4. Prove the famous Macmahon formula (see
https : //en.wikipedia.org/wiki/Plane_partition) that gives
the number of tilings of a hexagon of sides A,B,C. Ex-
plicitly, show that it equals

A∏
a=1

B∏
b=1

C∏
c=1

a+ b+ c− 1

a+ b+ c− 2
.

Hint: Look at Figure 3.

Figure 3. Tiling of hexagon.

Problem 5. Take N ≤ min(B,C) and consider the vertical section of the hexagon by the N -th
vertical line from the left. There are precisely N horizontal lozenges on this vertical section. The
positions of these lozenges in a uniformly random tiling form a random N -tuple of ordered integers
`1 > `2 > · · · > `N . Prove that the probability distribution on such N -tuples has the form

(4) P(`1, . . . , `N ) =
1

Z

∏
1≤i<j≤N

(`i − `j)2
N∏
i=1

w(`i),

�nd explicit expressions for Z and w.
Hint: When one �xes the horizontal lozenges along a vertical line, the tiling splits into two: to the
left and to the right of this line. The left and right tilings then can be counted by the same trick as
in Problem 3.
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