1. Problem Session 1

Exercise 1. Show that for $x>0$

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) e^{-\frac{x^{2}}{2}} \leq \int_{x}^{\infty} e^{-\frac{x^{2}}{2}} d x \leq \frac{1}{x} e^{-\frac{x^{2}}{2}}
$$

Exercise 2.

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left(\frac{1}{\sqrt{2 \pi}} \int_{a \sqrt{n}}^{b \sqrt{n}} e^{-\frac{t^{2}}{2}} d t\right)=-\inf _{x \in[a, b]} \frac{x^{2}}{2}
$$

Exercise 3. Find a candidate for the LDP rate function for μ_{n} if $\left(X_{i}\right)_{i \in \mathbb{N}}$ are i.i.d.
(a) exponential random variables with parameter $\lambda>0$.
(b) Poisson random variables with parameter $\lambda>0$.
(c) Is there a relationship between the two rate functions (associated to the same λ)?

Hint: If $\left(N_{t}\right)_{t \geq 0}$ is a Poisson process with rate λ and τ_{n} is the time of the n-th arrival then $N_{t}=\sup \left\{n \geq 0: \tau_{n} \leq t\right\}$.
Answer:

$$
\begin{aligned}
& \mathcal{I}_{\text {Exp }}(x)= \begin{cases}\lambda x-\ln (\lambda x)-1, & \text { if } x>0 \\
\infty, & \text { if } x \leq 0\end{cases} \\
& \mathcal{I}_{\text {Poi }}(x)= \begin{cases}x \ln (x / \lambda)-(x-\lambda), & \text { if } x>0 \\
\lambda, & \text { if } x=0 \\
\infty, & \text { if } x<0\end{cases}
\end{aligned}
$$

Exercise 4. Which is more likely: getting no heads when a fair coin is tossed n times, or getting fewer than n heads when a fair coin is tossed $8 n$ times?
Exercise 5. Which is more likely: getting no heads when a fair coin is tossed n times, or getting fewer than n heads when a fair coin is tossed $4 n$ times?

Exercise 6. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables such that $\mathbb{P}\left(X_{i}=1\right)=p_{i}$ and $\mathbb{P}\left(X_{i}=0\right)=1-p_{i}$ where $p_{i} \in(0,1)$ for every $i \in$ $\{1,2, \ldots, n\}$. Let $x>\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{i}\right]$. Prove that

$$
\mathbb{P}\left(X_{1}+X_{2}+\cdots+X_{n}>x\right)<\frac{\left(\left(p_{1}+p_{2}+\cdots+p_{n}\right) \cdot \frac{e}{x}\right)^{x}}{e^{p_{1}+\cdots+p_{n}}}
$$

Exercise 7.

(a) If $x>0$ and $y \in(0,1)$ are real numbers, prove that

$$
e^{\frac{x^{2}}{2}+x y} \geq y e^{x}+1-y
$$

(b) Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables such that $\mathbb{P}\left(X_{i}=1\right)=p_{i}$ and $\mathbb{P}\left(X_{i}=0\right)=1-p_{i}$ where $p_{i} \in(0,1)$ for every $i \in\{1,2, \ldots, n\}$. Let $\mu=\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{i}\right]$. Prove that for each $\varepsilon>0$ the following holds

$$
\mathbb{P}\left(X_{1}+X_{2}+\cdots+X_{n}>\mu+\varepsilon\right) \leq e^{-\frac{\varepsilon^{2}}{2 n}}
$$

