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We will introduce two problems from information theory related
to data compression and message transmission. The entropy of a
probability distribution will naturally arise in these contexts. We will
see how the entropy relates to large deviation events that can be used
to design successful compression algorithms.

Data Compression

All three images from Figure 1 below are of format 1200 × 2320.
However, when saved in Portable Network Graphics format, their
files have sizes of 2.9MB, 3.5MB, and 6.7MB, in increasing order.

Figure 1: Three images: 1) A smart-
phone, A Photograph of Baruch College;
2) Kazimir Malevich, Painterly Realism
of a Boy with a Knapsack - Color Masses in
the Fourth Dimension; 3) Jackson Pollock,
One: Number 31, 1950

Very few will be surprised to learn that the painting of “a Boy with a
Kanpsack” is the one that takes the fewest bits in memory. And yes,
Pollock is the worst.
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Let us imagine that we want to store some big quantity of data,
such as a picture, a text document, or a book. First, we have to start
with an un-compressed data, identify its smallest building block, and
called it symbol. The set of all symbols is Alphabet. While it is obvious how to visualize the

alphabet when we are talking about
books, it is worth pointing out that we
have several options of doing so.

Let us talk about pictures. One al-
phabet is created when each pixel is
represented by a number that corre-
sponds to its color. However, there is
another option. We partition the picture
in rectangles of the format 10 × 10.
Then each small rectangle consists of
100 pixels and every possible painting
of that rectangle is a letter in the alpha-
bet. This makes the alphabet very big.
However, it offers some advantages –
some symbols are extremely rare, and
certain symbols are not likely to be
followed by other symbols.

We will denote the alphabet by A. Our raw, un-compressed data
can be modeled as an element of the set AN and our goal is to find a
bijection between elements of sets AN and binary sequences in such
a way that short sequences correspond to data that is encountered
more often in real life.

The case when the message consists of IID letters

We will first simplify the problem a lot and our later generalizations
will look more realistic.

The alphabet A = {a1, a2, . . . , ak} is fixed. A message of length n is
simply an element of An. We will assume that we live in a simplified
world in which each message must be of length n.

Definition 1. A lossless data compression is an injective function

f : An →
N⋃

i=1

{0, 1}i

for some positive integer N.

For each message −→x ∈ An we denote by `
(−→x ) the length of the

message −→x .
It is easy to create lossless data compressions in which all mes-

sages have the same length, although the use of the word compression
is hardly justified with such behavior. The length ` of each message
has to satisfy

` ≥ n · log2 |A| .

Now we will assume that a message is random in the following
sense

Definition 2. A random iid message is a sequence X1, X2, . . . , Xn of
independent A-valued random variables with the same distribution.

Let us fix a sequence (p1, p2, . . . , pk) of positive numbers with
sum 1 and assume that each of the random variables has the same
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distribution P that satisfies

P(X = ai) = pi, for i ∈ {1, 2, . . . , k}.

We will divide all messages in two classes: Typical and Atypical.
To motivate the choice for definition of a typical message, let us fix
a sequence −→x = (x1, . . . , xn) and calculate the probability that a
random iid message

−→
X exactly matches the chosen sequence −→x .

The independence implies that this probability is equal to

P
(−→

X = −→x
)

= P (X1 = x1) · · ·P (Xn = xn)

= 2∑n
j=1 log2 P(Xj=xj)

= 2∑k
i=1 ni log2 pi ,

where ni is the number of times that the symbol ai appears in the
message

−→
X . A typical message −→x? is one of those in which the fre-

quency ni
n of the symbol ai is close to its probability pi. If we are deal-

ing with a typical message, then we have ni ≈ pin and the probability
of such a message is

P
(−→

X = −→x?
)
≈ 2n ∑k

i=1 pi log pi .

Definition 3. The quantity

H = −
k

∑
i=1

pi log2 pi. (1)

is called the entropy of the alphabet A.

A typical message appears with probability of order 2−nH . The
messages with this exact probability are still rare. However, it turns
out that messages with probabilities in a narrow interval around
2−nH are actually incredibly common. These are called ε-typical
messages.

Definition 4. For fixed ε, we say that −→x = (x1, . . . , xn) is ε-typical if

P
(−→

X = −→x
)
∈
(

2−n(H+ε), 2−n(H−ε)
)

.

The set of all ε-typical sequences −→x is denoted by Aε.

We will prove that typical messages occur with very high proba-
bility. We will also prove that the set of all typical messages is very
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small. The set of all messages has |A|n elements. However, we will
see that the set of typical messages has only 2nH messages.

Then when we see a typical message, we preface it with the num-
ber 0 and use nH bits to compress it. If the message is atypical, we
use 1 as the first bit and are free to do a rather sloppy job with the
rest. Atypical messages are numerous but rare, and the average per-
formance of the described algorithm is quite acceptable.

We will now provide the formal statement of the theorem and its
proof.

Theorem 1. For every given ω > 0, there exists n0 such that for every
n ≥ n0 there is a lossless data compression in which the average length of a
message satisfies

E
[
`
(−→

X
)]
≤ nH + nω. (2)

Proof. Let us choose ε = ω
dlog2|A|e+2 and denote by Aε the set of all

ε-typical messages. We will study this typical set and prove that it
has the following two properties:

Exercise 1. Prove that there exists n0 such
that for every n ≥ n0 the inequality (3)
holds.

(i) Large probability. For fixed ε, there exists n0 such that when n ≥ n0

the following holds

P
(−→

X ∈ Aε

)
> 1− ε. (3)

(ii) Small cardinality. The number of elements of Aε satisfies

|Aε| < 2n(H+ε). (4)

Then, upon receiving the message
−→
X , the strategy for compression

consists of checking whether
−→
X is typical, and depending on the

answer proceed as follows:

1. If it is, then the first character of compressed message is 0, fol-
lowed by an element of {0, 1}ndH+εe.

2. If it is not, then the first character of the compressed message is 1,
followed by an element of {0, 1}ndlog2|A|e.

The average length of the compressed message is

E
[
`
(−→

X
)]

= (1 + n(H + ε))P
(−→

X ∈ Aε

)
+ (1 + ndlog2 |A|e)P

(−→
A 6∈ Aε

)
≤ 1 + n(H + ε) + ndlog2 |A|eε
≤ nH + εn (dlog2 |A|e+ 2) = n(H + ω).
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It remains to prove the inequalities (3) and (4). The first of the two
inequalities follows from the weak law of large numbers and is left as
an exercise. The relation (4) follows from

1 = ∑
−→x ∈An

P
(−→

X = −→x
)
≥ ∑
−→x ∈Aε

P
(−→

X = −→x
)
≥ |Aε| · 2−n(H+ε).

Exercise 2. Prove that

|Aε| > (1− ε) · 2n(H−ε).

The algorithm we constructed creates a lossless compression. It is
very effective when the raw data is consists of components that are
independent from each other. When it comes to paintings, Pollock
would be most likely to produce a work that can be successfully
compressed with the algorithm described above. Fortunately, the
PNG format uses a better algorithm.

Method of Types

Our next task is to analyze the success of a compression algorithm in
situations that a raw data does not exactly follow the distribution P.
Every sequence −→x ∈ An that corresponds to a raw data generates
a probability measure P−→x on A. To each element a ∈ A we define
P−→x (a) as the frequence in which a appears in the sequence −→x . This
probability measure is called type of −→x and its formal definition is

Definition 5. For −→x ∈ An, the type of −→x is the probability measure P−→x
defined as

P−→x (a) =
1
n

k

∑
i=1

1xi (a). (5)

The set of all types on An is denoted by Pn. The sequences −→x and
−→y generate the same type (i.e. P−→x = P−→y ) if they can be obtained
from each other by permuting their components. For a given P ∈ Pn

we denote by T (P) ⊆ An the set of sequences −→x ∈ An for which
Px = P.
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Theorem 2. The number |Pn| satisfies

|Pn| =

(
n + |A| − 1

n

)
and (6)

|Pn| < (n + 1)|A|. (7)

Exercise 3. Prove the equality (6) and the
inequality (7).

Assume that
−→
X = (X1, . . . , Xn) is an iid random message where

each component is drawn according to the probability Q. For a fixed
sequence −→x ∈ An we have

Q
(−→

X = −→x
)

=
n

∏
i=1

Q (X = xi) = 2∑n
i=1 log2 Q(X=xi)

= 2∑n
i=1 ∑a∈A 1xi (a) log2 Q(X=a)

= 2∑a∈A ∑n
i=1 1xi (a) log2 Q(X=a)

= 2n ∑a∈A log2 Q(X=a) 1
n ∑n

i=1 1xi (a)

= 2n ∑a∈A P−→x (a) log2 Q(X=a).

The last quantity can be written in terms of the entropy of P−→x in the
following way:

∑
a∈A

P−→x (a) log2 Q (X = a) = ∑
a∈A

P−→x (a) log2 P−→x (X = a)

− ∑
a∈A

P−→x (a) log2
P−→x (X = a)
Q (X = a)

= −H (P−→x )− H (P−→x |Q) ,

where H(µ) is an entropy of the measure µ and H(µ|ν) is a relative
entropy of the measure µ with respect to ν. These are defined as

Exercise 4. The random variable X
has values in the set {−2, 0, 2} and the
expectation 1. What is the smallest and the
largest entropy that the distribution of X
can have?

Exercise 5. Prove that H (µ|ν) ≥ 0. Prove
that H(µ|ν) = 0 if and only if µ = ν.

H(µ) = −Eµ [log2 µ] (8)

H(µ|ν) = Eµ

[
log2

µ

ν

]
. (9)

The previous calculation can be summarized as

Theorem 3. Fix −→x ∈ An. If
−→
X is a random vector with iid components of

distribution Q, the following holds:

Q
(−→

X = −→x
)

= 2−n(H(P−→x )+H(P−→x |Q)). (10)

If Q is a type of −→x , i.e. Q = P−→x , then (10) and H(µ|µ) = 0 imply

Q
(−→

X = −→x
)

= 2−nH(Q). (11)
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Observe that H (P−→x ) is constant for all sequences of the same
type. Let us fix a measure P ∈ An. Then for −→x ∈ T (P), all values
H (P−→x ) are equal to H (P). Therefore we have

P
(−→

X ∈ T (P)
)

= ∑
−→x ∈T(P)

P
(−→

X = −→x
)
= |T (P)| · 2−nH(P).(12)

Using that the probability on the left can be at most 1 we obtain the
following upper bound on the cardinality of the type

|T (P)| ≤ 2nH(P). (13)

The following result that is left as an exercise confirms that under
the probability measure P−→x , it is most likely to draw a sequence
whose type class is the same as the type class of −→x .

Exercise 6. Prove that if P, Q ∈ Pn are two types then

P
(−→

X ∈ T (P)
)
≥ P

(−→
X ∈ T (Q)

)
. (14)

Using the inequality (14) and the equality (12) we can establish a
lower bound for the probability of a type-class.

1 = ∑
Q∈Pn

P (T (Q))

≤ P (T (P)) · |Pn|
= |T (P)| · 2−nH(P) · |Pn| .

Re-arranging the terms gives us

|T (P)| ≥ 2−nH(P)

|Pn|
,

which together with (7) implies

|T (P)| ≥ 2nH(P)

(n + 1)A
. (15)

Theorem 4 (Sanov). Assume that E ⊆ Pn. Then the following holds

lim sup
n→∞

1
n

log2 P
(

P−→X ∈ E
)
≤ − inf

Q∈E
H (Q|P) , (16)

lim inf
n→∞

1
n

log2 P
(

P−→X ∈ E
)
≥ − inf

Q∈E◦
H (Q|P) , (17)

where E◦ is the interior of the set E.
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Proof. The upper bound follows from

P
(

P−→X ∈ E
)

= ∑
Q∈E

P
(

P−→X = Q
)

= ∑
Q∈E

P
(−→

X ∈ T (Q)
)

≤ |E| sup
Q∈E

P
(−→

X ∈ T (Q)
)

≤ (n + 1)|A| · sup
Q∈E

P
(−→

X ∈ T (Q)
)

. (18)

Using the identity (10) we conclude

P
(−→

X ∈ T (Q)
)

= ∑
−→y ∈T(Q)

P
(−→

X = −→y
)

= |T (Q)| ·P
(−→

X = −→y
)

= |T (Q)| · 2−n
(

H
(

P−→y

)
+H

(
P−→y

∣∣∣P))
= |T (Q)| · 2−n(H(Q)+H(Q|P))

≤ 2−nH(Q|P). (19)

From (18) and (19) we obtain (16). Now we concentrate on proving
(17). Let ε > 0 and P? an element of E◦ such that

H (P?|P) ≤ ε + inf
Q∈E◦

H (Q|P) . (20)

Observe that P? is an element of Pn, hence there exists −→x? such that
P? = P−→x? . We will obtain a lower bound for the probability of the

event
{

P−→X ∈ E
}

in the following way

P
(

P−→X ∈ E
)
≥ P

(
P−→X = P?

)
= P

(−→
X ∈ T (P?)

)
= |T (P?)| ·P

(−→
X = −→x?

)
≥ 2nH(P?)

(n + 1)|A|
·P
(−→

X = −→x?
)

=
2nH(P?)

(n + 1)|A|
· 2−n(H(P?)+H(P? |P))

=
2−nH(P? |P)

(n + 1)|A|

≥ 2−n(ε+infQ∈E◦ H(Q|P))

(n + 1)|A|
.

The last inequality implies

lim inf
n→∞

1
n

log2 P
(

P−→X ∈ E
)
≥ −ε− inf

Q∈E◦
H (Q|P) .
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Since the last inequality holds for every ε > 0 we conclude that (17)
must hold as well.

Exercise 7. Let us define E =
{

Q ∈ Pn :
∫
A a dQ(a) ≥ α

}
.

(a) Assume that X1, . . . , Xn are iid with distribution P on A. Prove that

P

(
X1 + · · ·+ Xn

n
≥ α

)
= P

(
P−→X ∈ E

)
.

(b) Use the method of Lagrange multipliers to prove that

inf
Q∈E

H (Q|P) = αθ − log2

(
k

∑
i=1

pi2θai

)
,

where θ is the unique solution of ∑k
i=1 ai pi2θai

∑k
i=1 pi2θai

= α.

(c) Prove that Sanov’s theorem implies Cramér’s theorem in the case that the
probability space is discrete.

Binary Investigation

A random element is chosen from the set S = {s1, . . . , sn} and
painted in green. The probability that the element si is chosen is
pi, where p1, . . . , pn are fixed positive real numbers that add up to 1.

In each step we are allowed to choose a subset T of S and ask the
question:

“Does the green element belong to the set T?”
We receive a “Yes” or “No” for an answer. Our goal is to find out

the green number.
We are in business of playing this game many times. In each game,

a number from S becomes green, and we start asking questions until
we figure out which one. Then we play the game again. However, the
answers to our questions are pronounced in an annoying voice that
we would like to hear a little bit less of. Obviously, there is still much
fun left to the game that we can’t resist playing it repeatedly. What is
the way to play?

In our first step we must choose a set T. There are only finitely
many choices for the first question (how many?). Consequently, there
are only finitely many strategies in the game and we want to identify
the best.

We can build a tree for each strategy. One example is shown in
Figure 2.
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Figure 2: A tree corresponding to the
following strategy:
Question 1: “Does the green number
belong to the set {s1, s2, s5, s9, s10}?”
Question 2 if the Answer 1 is “Yes:”
“Does the green number belong to the
set {s1, s5}?”
Question 2 if the Answer 1 is “No:”
“Does the green number belong to the
set {s6}?”

Let us label by mi the number of questions in the case that the
green number is si. In Example from Figure 2, we have that m1 =

m5 = m10 = m7 = 3, m2 = m4 = m9 = 4, m6 = 2, m3 = m8 = 5.

Exercise 8. Prove that the following equality always holds:

n

∑
i=1

1
2mi

= 1. (21)

Once the strategy is fixed, we can denote by N(S) the total number
of questions asked. Then N(S) is a random variable and its expecta-
tion satisfies

E [N(S)] =
n

∑
i=1

mi pi.

Conversely, the following holds:

Exercise 9. For every sequence of n positive integers m1, m2, . . . , mn that
satisfy (21), there exists a tree with n nodes such that the height of the i-th
node is exactly mi.

Hint: Prove that there are two of the numbers mi and mj that are
equal. Then consider the problem in which these two numbers are
replaced with a single number equal to mi − 1.

Theorem 5. Let us denote

H = −∑
s∈S

P(s) log2 P(s) =
n

∑
i=1
−pi log2 pi.
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The following inequalities hold

H ≤ E [N(S)] < H + 1. (22)

Proof. We will first prove the inequality H ≤ E [N(S)]. We will prove
the inequality for each strategy using the induction on the number of
elements n in the set S. Let us denote by T ⊆ S the first subset that
we use in asking the first questions. Then T also corresponds to the
event that the answer to the first question is “Yes,” in which case we
go to the left sub-tree. The set TC corresponds to the event that the
answer to the first question is “No”. Then we have

E [N(S)] = E [N(S)| T] ·P(T) + E
[

N(S)| TC
]
·P
(

TC
)

. (23)

Assume that an element of T is chosen. Then N(S) = 1 + N(T),
where N(T) is the number of questions necessary to find out which
number from T is green. We are assuming that that the left sub-tree
is used. Since T has fewer elements than S, we will use induction hy-
pothesis for the probability defined on T with PT(x) = P(x)/P(T).
Therefore

E [N(S)| T] = 1 + E [N(T)| T]

≥ 1− ∑
x∈T

P(x)
P(T)

log2
P(x)
P(T)

.

Using an equivalent inequality for TC, the relation (23) implies

Exercise 10. For x ∈ (0, 1) prove that

1 + x log2 x + (1− x) log2(1− x) ≥ 0.

E [N(S)] ≥ P(T) + P
(

TC
)
− ∑

x∈S
P(x) log2 P(x)

+P(T) log2 P(T) + P
(

TC
)

log2 P
(

TC
)

= 1 + H + P(T) log2 P(T) + P
(

TC
)

log2 P
(

TC
)

≥ H.

The last inequality follows from Exercise 10.

Exercise 11. If m̂1, . . . , m̂n are positive

integers such that
n

∑
i=1

1
2m̂i
≤ 1 there are

positive integers m1, . . . , mn such that
mi ≤ m̂i for all i ∈ {1, . . . , n} and

n

∑
i=1

1
2mi

= 1.

Now we will prove that there exists a strategy for which E [N(S)] <
H + 1. Let us define

m̂i = d− log2 P (si)e

for i ∈ {1, 2, . . . , n}.
Observe that

1 =
n

∑
i=1

1
2− log2 P(si)

≥
n

∑
i=1

1
2d− log2 P(si)e

=
n

∑
i=1

1
2m̂i

.

According to result from Exercise 11 there are positive integers m1,
. . . , mn smaller than m̂1, . . . , m̂n, respectively, that satisfy (21). The
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result of Exercise 9 means that there is a tree with n nodes whose
heights are m1, . . . , mn. The Expected value of the number of ques-
tions in such strategy is

E [N(S)] =
n

∑
i=1

mi pi ≤
n

∑
i=1

m̂i pi <
n

∑
i=1

(− log2 pi + 1) pi

=
n

∑
i=1

pi −
n

∑
i=1

pi log2 pi

= 1 + H.

This completes the proof of the Theorem 5.
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