1. Problem Session 2

Exercise 1. Prove the inequality (3) from lecture notes: For fixed ε , denote by $\mathcal{A}_{\varepsilon}$ the set of all sequences $\overrightarrow{x} = (x_1, \ldots, x_n)$ such that

$$\mathbb{P}\left(\overrightarrow{X} = \overrightarrow{x}\right) \in \left(2^{-n(H+\varepsilon)}, 2^{-n(H-\varepsilon)}\right).$$

Prove that there exists n_0 such that for every $n \ge n_0$ the following holds

$$\mathbb{P}\left(\overrightarrow{X}\in\mathcal{A}_{\varepsilon}\right)>1-\varepsilon.$$

Exercise 2. Prove that

$$|\mathcal{A}_{\varepsilon}| > (1-\varepsilon) \cdot 2^{n(H-\varepsilon)}.$$

Exercise 3. If \mathcal{P}_n is the set of all types on \mathcal{A}^n , prove that

$$|\mathcal{P}_n| = \binom{n+|\mathcal{A}|-1}{n} < (n+1)^{|\mathcal{A}|}.$$

Exercise 4. The random variable X has values in the set $\{-2, 0, 2\}$ and the expectation 1. What is the smallest and the largest entropy that the distribution of X can have?

Exercise 5. Prove that $H(\mu|\nu) \ge 0$. Prove that $H(\mu|\nu) = 0$ if and only if $\mu = \nu$.

Exercise 6. Prove that if $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_n$ are two types then

$$\mathbb{P}\left(\overrightarrow{X}\in T\left(\mathbb{P}\right)\right) \geq \mathbb{P}\left(\overrightarrow{X}\in T\left(\mathbb{Q}\right)\right).$$
(1)

Exercise 7. Let us define $E = \{ \mathbb{Q} \in \mathcal{P}_n : \int_{\mathcal{A}} a \, d\mathbb{Q}(a) \ge \alpha \}.$

(a) Assume that X_1, \ldots, X_n are iid with distribution \mathbb{P} on \mathcal{A} . Prove that

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} \ge \alpha\right) = \mathbb{P}\left(\mathbb{P}_{\overrightarrow{X}} \in E\right).$$

(b) Use the method of Lagrange multipliers to prove that

$$\inf_{\mathbb{Q}\in E} H\left(\left.\mathbb{Q}\right|\left.\mathbb{P}\right) = \alpha\theta - \log_2\left(\sum_{i=1}^k p_i 2^{\theta a_i}\right),$$

where θ is the unique solution of $\frac{\sum_{i=1}^k a_i p_i 2^{\theta a_i}}{\sum_{i=1}^k p_i 2^{\theta a_i}} = \alpha$

(c) Prove that Sanov's theorem implies Cramér's theorem in the case that the probability space is discrete.

Exercise 8. Prove that

$$\sum_{i=1}^{n} \frac{1}{2^{m_i}} = 1,$$
(2)

where m_i is the depth of the *i*th vertex in a binary tree.

Exercise 9. For every sequence of n positive integers m_1, m_2, \ldots, m_n that satisfy (2), there exists a tree with n nodes such that the height of the *i*-th node is exactly m_i .

Hint: Prove that there are two of the numbers m_i and m_j that are equal. Then consider the problem in which these two numbers are replaced with a single number equal to $m_i - 1$.

Exercise 10. For $x \in (0, 1)$ prove that

$$1 + x \log_2 x + (1 - x) \log_2(1 - x) \ge 0.$$

Exercise 11. If $\hat{m}_1, \ldots, \hat{m}_n$ are positive integers such that $\sum_{i=1}^n \frac{1}{2\hat{m}_i} \leq 1$ there are positive integers m_1, \ldots, m_n such that $m_i \leq \hat{m}_i$ for all $i \in \{1, \ldots, n\}$ and

$$\sum_{i=1}^{n} \frac{1}{2^{m_i}} = 1.$$