1. Problem Session 2

Exercise 1. Prove the inequality (3) from lecture notes: For fixed ε, denote by $\mathcal{A}_{\varepsilon}$ the set of all sequences $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\mathbb{P}(\vec{X}=\vec{x}) \in\left(2^{-n(H+\varepsilon)}, 2^{-n(H-\varepsilon)}\right)
$$

Prove that there exists n_{0} such that for every $n \geq n_{0}$ the following holds

$$
\mathbb{P}\left(\vec{X} \in \mathcal{A}_{\varepsilon}\right)>1-\varepsilon
$$

Exercise 2. Prove that

$$
\left|\mathcal{A}_{\varepsilon}\right|>(1-\varepsilon) \cdot 2^{n(H-\varepsilon)} .
$$

Exercise 3. If \mathcal{P}_{n} is the set of all types on \mathcal{A}^{n}, prove that

$$
\left|\mathcal{P}_{n}\right|=\binom{n+|\mathcal{A}|-1}{n}<(n+1)^{|\mathcal{A}|} \text {. }
$$

Exercise 4. The random variable X has values in the set $\{-2,0,2\}$ and the expectation 1. What is the smallest and the largest entropy that the distribution of X can have?

Exercise 5. Prove that $H(\mu \mid \nu) \geq 0$. Prove that $H(\mu \mid \nu)=0$ if and only if $\mu=\nu$.
Exercise 6. Prove that if $\mathbb{P}, \mathbb{Q} \in \mathcal{P}_{n}$ are two types then

$$
\begin{equation*}
\mathbb{P}(\vec{X} \in T(\mathbb{P})) \geq \mathbb{P}(\vec{X} \in T(\mathbb{Q})) \tag{1}
\end{equation*}
$$

Exercise 7. Let us define $E=\left\{\mathbb{Q} \in \mathcal{P}_{n}: \int_{\mathcal{A}} a d \mathbb{Q}(a) \geq \alpha\right\}$.
(a) Assume that X_{1}, \ldots, X_{n} are iid with distribution \mathbb{P} on \mathcal{A}. Prove that

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{n} \geq \alpha\right)=\mathbb{P}\left(\mathbb{P}_{\vec{X}} \in E\right)
$$

(b) Use the method of Lagrange multipliers to prove that

$$
\begin{aligned}
& \inf _{\mathbb{Q} \in E} H(\mathbb{Q} \mid \mathbb{P})=\alpha \theta-\log _{2}\left(\sum_{i=1}^{k} p_{i} 2^{\theta a_{i}}\right) \\
& \text { where } \theta \text { is the unique solution of } \frac{\sum_{i=1}^{k} a_{i} p_{i} 2^{\theta a_{i}}}{\sum_{i=1}^{k} p_{i} 2^{\theta a_{i}}}=\alpha .
\end{aligned}
$$

(c) Prove that Sanov's theorem implies Cramér's theorem in the case that the probability space is discrete.

Exercise 8. Prove that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2^{m_{i}}}=1 \tag{2}
\end{equation*}
$$

where m_{i} is the depth of the ith vertex in a binary tree.
Exercise 9. For every sequence of n positive integers $m_{1}, m_{2}, \ldots, m_{n}$ that satisfy (2), there exists a tree with n nodes such that the height of the i-th node is exactly m_{i}.

Hint: Prove that there are two of the numbers m_{i} and m_{j} that are equal. Then consider the problem in which these two numbers are replaced with a single number equal to $m_{i}-1$.

Exercise 10. For $x \in(0,1)$ prove that

$$
1+x \log _{2} x+(1-x) \log _{2}(1-x) \geq 0
$$

Exercise 11. If $\hat{m}_{1}, \ldots, \hat{m}_{n}$ are positive integers such that $\sum_{i=1}^{n} \frac{1}{2^{\hat{m}_{i}}} \leq 1$ there are positive integers m_{1}, \ldots, m_{n} such that $m_{i} \leq \hat{m}_{i}$ for all $i \in\{1, \ldots, n\}$ and

$$
\sum_{i=1}^{n} \frac{1}{2^{m_{i}}}=1
$$

