PROBLEM SESSION 3

The following two exercises produce parts of a proof of Varadhan-Bryc theorem.

Exercise 1. Prove that if a sequence of probability measures $(\mu)_{n \in \mathbb{N}}$ on $(\mathbb{X}, \mathcal{X})$ satisfies a LD lower bound with a rate function \mathcal{I} and F is a lower-semicontinuous function on \mathbb{X} , then

$$\lim_{n \to \infty} \frac{1}{n} \ln \int_{\mathbb{X}} e^{nF} d\mu_n \ge \sup_{x \in \mathbb{X}} \left(F(x) - \mathcal{I}(x) \right).$$

Hint: for each $x \in \mathbb{X}$ and $\epsilon > 0$ consider an open set $O_{x,\epsilon} := \{y \in \mathbb{X} : F(y) > F(x) - \epsilon\}$, restrict the integral to this set to set a lower bound. Then let $\epsilon \to 0$.

Exercise 2. Given a rate function \mathcal{I} and a sequence of probability measures $(\mu)_{n \in \mathbb{N}}$ on $(\mathbb{X}, \mathcal{X})$, show that if for every lower-semicontinuous function F

$$\lim_{n \to \infty} \frac{1}{n} \ln \int_{\mathbb{X}} e^{nF} d\mu_n \ge \sup_{x \in \mathbb{X}} \left(F(x) - \mathcal{I}(x) \right). \tag{1}$$

then $(\mu_n)_{n\in\mathbb{N}}$ satisfies a LD lower bound with a rate function \mathcal{I} . Hint: given an open set O, for $x \in O$, a small $\delta > 0$, and large N > 0 define $F_{x,\delta,N}(y) = -N\min\left\{\frac{d(x,y)}{\delta},1\right\}$. For $F_{x,\delta,N}$ estimate the left hand side of (1) above and below, and then let $N \to \infty$. Notation: d(x,y) is the distance between x and y in \mathbb{X} .

Y is said to have a *lognormal* distribution with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$ if $\ln Y$ is normal with mean μ and variance σ^2 .

Exercise 3. Let $(Y_i)_{i \in \mathbb{N}}$ be an *i.i.d.* sequence of lognormal random variables with parameters μ and σ and ν_n be the distribution of geometric means, $\tilde{Y}_n = (\prod_{i=1}^n Y_i)^{1/n}$. Is there a LDP for ν_n ? If yes, then what is the rate function?

Exercise 4. Use the contraction principle to derive Cramér theorem on a finite probability space from Sanov theorem (see the second lecture).

Exercise 5. Let $(\mu_n)_{n\in\mathbb{N}}$ be the distribution of empirical means of a sequence of *i.i.d.* Bernoulli variables with parameter 1/2. Use exponential tilting to obtain a LDP for the distributions $(\nu_n)_{n\in\mathbb{N}}$ of empirical means of a sequence of *i.i.d.* Bernoulli variables with parameter $p \neq 1/2$ directly from the LDP for $(\mu_n)_{n\in\mathbb{N}}$ (see the first lecture).

In preparation for the last lecture, solve the following exercise.

Exercise 6. Let μ be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ with a density proportional to $e^{-|x|}/(1+|x|^{d+2})$ and Λ be its logarithmic MGF. (a) Show that $D_{\Lambda} = \{x \in \mathbb{R}^d : ||x|| \leq 1\}$. (b) Show that $|\nabla \Lambda(x)| \neq \infty$ as $x \in D_{\Lambda}$ approaches the boundary of D_{Λ} . This is an example of non-steep logarithmic MGF.

Exercise 7. Study the Curie-Weiss model discussed in lecture notes in the case when $h \neq 0$.