Problem Session 3

The following two exercises produce parts of a proof of Varadhan-Bryc theorem.
Exercise 1. Prove that if a sequence of probability measures $(\mu)_{n \in \mathbb{N}}$ on $(\mathbb{X}, \mathcal{X})$ satisfies a LD lower bound with a rate function \mathcal{I} and F is a lower-semicontinuous function on \mathbb{X}, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \int_{\mathbb{X}} e^{n F} d \mu_{n} \geq \sup _{x \in \mathbb{X}}(F(x)-\mathcal{I}(x))
$$

Hint: for each $x \in \mathbb{X}$ and $\epsilon>0$ consider an open set $O_{x, \epsilon}:=\{y \in \mathbb{X}: F(y)>$ $F(x)-\epsilon\}$, restrict the integral to this set to set a lower bound. Then let $\epsilon \rightarrow 0$.

Exercise 2. Given a rate function \mathcal{I} and a sequence of probability measures $(\mu)_{n \in \mathbb{N}}$ on $(\mathbb{X}, \mathcal{X})$, show that if for every lower-semicontinuous function F

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \ln \int_{\mathbb{X}} e^{n F} d \mu_{n} \geq \sup _{x \in \mathbb{X}}(F(x)-\mathcal{I}(x)) \tag{1}
\end{equation*}
$$

then $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ satisfies a LD lower bound with a rate function \mathcal{I}.
Hint: given an open set O, for $x \in O$, a small $\delta>0$, and large $N>0$ define $F_{x, \delta, N}(y)=-N \min \left\{\frac{d(x, y)}{\delta}, 1\right\}$. For $F_{x, \delta, N}$ estimate the left hand side of (1) above and below, and then let $N \rightarrow \infty$. Notation: $d(x, y)$ is the distance between x and y in \mathbb{X}.
Y is said to have a lognormal distribution with parameters $\mu \in \mathbb{R}$ and $\sigma>0$ if $\ln Y$ is normal with mean μ and variance σ^{2}.

Exercise 3. Let $\left(Y_{i}\right)_{i \in \mathbb{N}}$ be an i.i.d. sequence of lognormal random variables with parameters μ and σ and ν_{n} be the distribution of geometric means, $\tilde{Y}_{n}=\left(\prod_{i=1}^{n} Y_{i}\right)^{1 / n}$. Is there a LDP for ν_{n} ? If yes, then what is the rate function?

Exercise 4. Use the contraction principle to derive Cramér theorem on a finite probability space from Sanov theorem (see the second lecture).

Exercise 5. Let $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ be the distribution of empirical means of a sequence of i.i.d. Bernoulli variables with parameter $1 / 2$. Use exponential tilting to obtain a LDP for the distributions $\left(\nu_{n}\right)_{n \in \mathbb{N}}$ of empirical means of a sequence of i.i.d. Bernoulli variables with parameter $p \neq 1 / 2$ directly from the LDP for $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ (see the first lecture).

In preparation for the last lecture, solve the following exercise.
Exercise 6. Let μ be a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ with a density proportional to $e^{-|x|} /\left(1+|x|^{d+2}\right)$ and Λ be its logarithmic $M G F$.
(a) Show that $D_{\Lambda}=\left\{x \in \mathbb{R}^{d}:\|x\| \leq 1\right\}$.
(b) Show that $|\nabla \Lambda(x)| \nrightarrow \infty$ as $x \in D_{\Lambda}$ approaches the boundary of D_{Λ}.

This is an example of non-steep logarithmic MGF.

Exercise 7. Study the Curie-Weiss model discussed in lecture notes in the case when $h \neq 0$.

