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Abstract
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Summer School in Probability, July 2018. My thanks to Antonio Auffinger and Elton
Hsu for inviting me to give this course.
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1 Introduction

1.1 Groups and their Cayley graphs

The random walks to be studied in these lectures will all live in infinite, finitely generated
groups. A group Γ is said to be finitely generated if there is a finite set A, the set of generators,
such that every element of Γ can be expressed as a finite product of elements of A. Because
the set of finite sequences from a finite set A is countable, every finitely generated group
is either finite or countable. We will assume throughout that the set A of generators is
symmetric, that is, for every a ∈ A it is also the case that a−1 ∈ A.

For any finitely generated group Γ with (symmetric) generating setA there is a homoge-
neous graph GΓ = GΓ;A, called the Cayley graph, that reflects, in a natural way, the geometry
of the group. This is defined as follows:

(a) the vertex set of GΓ is the group Γ; and
(b) the edge set of GΓ is the set of unordered pairs {x, y} of group elements such that

y = xa for some a ∈ A.

The edge structure of this graph provides a convenient way to define a metric d, called
the word metric or just the Cayley graph metric, on the group Γ: for any two group elements
x, y, the distance d(x, y) is defined to be the length of the shortest path in GΓ from x to y,
equivalently, d(x, y) is the length m of the shortest word a1a2 · · · am in the generators that
represents the group element x−1y. Clearly, the word metric d depends on the choice of the
generating set A.

Example 1.1. The additive group of d−dimensional integer points Zd has generating set
{±ei}1≤i≤d, where ei is the ith standard unit vector in Rd. The Cayley graph with respect
to this set of generators is the usual cubic lattice in d dimensions.

Example 1.2. The free group Fd on d ≥ 2 generators a1, a2, · · · , ad is the set of all finite words
(including the empty word ∅, which represents the group identity)

x = b1b2 · · · bn
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in which each bi is one of the symmetric generators a±1
i , and in which no entry bi is adjacent

to its inverse b−1
i . Such words are called reduced. Two such words x, y are multiplied

by concatenating theeir representative words and then doing whatever cancellations of
adjacent letters are possible at the juxtaposition point. For instance, if x = de−1fd and
y = d−1f−1dde then

xy = (de−1fd)(d−1f−1dde) = de−1dde.

The Cayley graph of the free group Fd relative to the standard set of generators A =
{a±1

i }i≤d is the infinite, homogeneous tree Td of degree d: for d = 2,

Example 1.3. The free product Z2 ∗Z2 ∗Z2 of three copies of the two element group consists
of all finite words (once again including the empty word ∅) from the three-element alphabet
{a, b, c} in which no letter a, b, or c is adjacent to itself. Group multiplication is concate-
nation followed by successive elimination of as many “spurs” aa, bb, or cc as possible at
the juxtaposition point. (Thus, each one-letter word a, b, c is its own inverse.) The Cayley
graph is once again an infinite tree, this one of degree 3:
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Example 1.4. The group SL(2,Z) is the group of 2× 2 matrices with integer entries and de-
terminant 1, with matrix multiplication. This group has the two-element normal subgroup
{±I}; the quotient group SL(2,Z)/{±I} is known as PSL(2,Z). Its Cayley graph relative
to the generating set (

1 1
0 1

)
,

(
1 −1
0 1

)
,

(
0 −1
1 0

)
looks like this (actually, it looks like the dual graph to this):

Here each geodesic triangle represents a vertex (group element); two vertices share an edge
in the Cayley graph if the corresponding triangles meet in a side.
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1.2 Random Walks: Definitions and Conventions

Henceforth, we will use multiplicative notation for the group operation (except when the
group is the integer lattice Zd), and we will denote the group identity by the symbol 1
(but for free groups and free products, we will sometimes use ∅ for the group identity to
emphasize its word representation). Assume henceforth that Γ is a finitely generated group
with symmetric generating set A and corresponding Cayley graph GΓ.

Definition 1.5. A random walk on Γ (or equivalently onGΓ) is an infinite sequenceX0, X1, · · ·
of Γ−valued random variables, all defined on the same probability space (Ω,F , P x, ) of the
form

Xn = X0ξ1ξ2 · · · ξn (1.1)

where ξ1, ξ2, · · · are independent, identically distributed random variables that take values
in Γ. When the increments ξi take values in the generating set A, the random walk is a
nearest-neighbor random walk. Unless otherwise specified, the initial state is X0 = 1. For any
other (non-random) initial state X0 = x ∈ Γ, we shall use a superscript x on the probability
and expectation operators P x and Ex; thus, P x{Xn = y} = P{Xn = x−1y}. The step
distribution of the random walk Xn is the common distribution µ of the increments ξi, that
is,

µ(y) : = P{ξi = y} =⇒ (1.2)
µ∗n(y) = P{Xn = y}. (1.3)

Here µ∗n denotes the n−fold convolution of the probability measure µ with itself. The
n−step transition probabilities are defined by

pn(x, y) = P x{Xn = y} = µ∗n(x−1y). (1.4)

Technical Note: A Γ−valued random variable Xn is, by definition, a measurable mapping
Xn : Ω→ Γ, where Ω is a set equipped with a σ−algebra F . What it means for a mapping
Xn : Ω→ Γ to be measurable 1 is that for every element y ∈ Γ the set {Xn = y} := X−1

n {y}
is an element of the σ−algebra F . For each x ∈ Γ there is a probability measure P x on the
σ−algebra F , which is uniquely specified by the requirement that for any finite sequence
a1, a2, · · · , an in the generating set A,

P x{X0 = x and Xj+1 = Xjaj+1 ∀ 0 ≤ j < n} =

n∏
j=1

µ(aj). (1.5)

When x = 1, we shall omit the superscript on P x; thus, P = P 1. See the Appendix for
a brief explanation of how to build a measure space that supports an infinite sequence

1More generally, a mappling T : Ω→ Υ from one measurable space (Ω,F) to another (Υ,G) is measurable
if for every set G ∈ G the inverse image T−1(G) ∈ F . If the σ−algebra G is generated by a subset A ⊂ G –
that is, if G is the minimal σ−algebra containing A – then to check measurability it is enough to check that
T−1(A) ∈ F for every A ∈ A.
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ξ1, ξ2, · · · of independent, identically distributed random variables with given distribution
µ.

A random walkXn is said to be symmetric if its step distribution is invariant by inversion
(that is, if µ(y) = µ(y−1) for every y ∈ Γ), and it is irreducible if every element y of the group
is accessible from the initial point X0 = 1 (that is, if P{Xn = y} > 0 for some n = 1, 2, · · · ).
Obviously, a sufficient condition for irreducibility of a nearest-neighbor random walk is
that the step distribution µ attach positive probability to every element of the generating
set A. For a symmetric random walk, there is no loss of generality in assuming that this
latter condition holds, because if a nearest-neighbor random walk is irreducible, then the
(symmetric) subset of the generating setA on which µ is positive must itself be a generating
set.

The period of an irreducible random walk is the greatest common divisor of the set

{n ≥ 1 : pn(1, 1) > 0};

the random walk is said to be aperiodic if the period is 1. Every symmetric random walk
must have period either 1 or 2, because symmetry forces p2(1, 1) > 0. It is sometimes a
nuisance to have to account for periodicity, but fortunately there is a simple device for
reducing many questions — in particular, questions about “where the random walk goes”
— about periodic random walks to questions about aperiodic random walks. This works as
follows.

Let Xn be a random walk with step distribution µ, and let Y1, Y2, · · · be an independent
sequence of Bernoulli(1

2) random variables (i.e., coin tosses). Define

X ′n = XSn where Sn =
n∑
i=1

Yi;

then the sequence X ′n is an aperiodic random walk, with step distribution (µ + δ1)/2, that
follows the same trajectory as the original random walk Xn. The modified random walk
X ′n is called the lazy version of Xn, because in effect, at each step the random walker tosses
a coin to decide whether to move or to stay put. Although the lazy random walk follows
the same trajectory as the original random walk, it obviously does not do so at the same
speed; in fact, the step distributions are related as follows:

P{X ′n = y} =
n∑

m=0

(
n

m

)
2−nP{Xm = y} =

n∑
m=0

(
n

m

)
2−nµ∗m(y).

1.3 Recurrence and Transience

Definition 1.6. A random walk Xn on a finitely generated group Γ is said to be recurrent if
the event {Xn = 1 for some n ≥ 1} that the random walk eventually returns to its initial
point has probability 1; otherwise, the random walk is said to be transient.
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The distinction between recurrent and transient random walks is of obvious interest,
but will not be a principal concern of these notes. Most interesting random walks on most
infinite groups are, as we will see, transient, and so most of our effort will go to the study of
transient random walks. Nevertheless, we will mention in passing the following important
criterion of G. POLYA for determining when a random walk is recurrent.

Proposition 1.7. A random walk Xn on a finitely generated group is recurrent if and only if

∞∑
n=0

P{Xn = 1} =∞. (1.6)

Proof. For each n = 1, 2, · · · , let Fn be the event that the number of returns to the initial
state X0 = 1 is at least n. Then the total number of returns to the initial point can be written
as

∞∑
n=1

1{Xn = 1} =
∞∑
n=1

1Fn .

Consequently,

∞∑
n=0

P{Xn = 1} = 1 +

∞∑
n=1

P (Fn) =

∞∑
n=0

P (F1)n = 1/(1− P (F1)),

and so P (F1) = 1 if and only if the sum in (1.6) is infinite.

The missing step in this argument is the identity P (Fn) = P (F1)n. That this holds
should be intuitively clear: each time the random walk returns to its starting point, it
“begins afresh”, so the conditional probability that it returns again is the same as the uncon-
ditional probability that it returns at least once. To fashion a rigorous proof, break the event
Fn into elementary pieces, that is, write it as a union of cylinder events

C(x0, x1, x2, · · · , xm) = C := {Xi = xi ∀ 0 ≤ i ≤ m} (1.7)

where x1, x2, · · · , xm is a finite sequence in Γ with exactly n entries xi = 1, the last at time
n = m. For each such cylinder C, the event Fn+1 ∩C occurs if and only if C occurs and the
sequence of partial products

ξm+1, ξm+1ξm+2, · · ·

returns to 1. Since the random variables ξi are independent and identically distributed, it
follows that

P (C ∩ Fn+1) = P (C)P (F1).

Summing over the cylinder events that constitute Fn gives P (Fn+1) = P (Fn+1 ∩ Fn) =
P (F1)P (Fn).
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1.4 Simple Random Walk on Zd

The simple random walk on the integer lattice Zd is the nearest-neighbor random walk with
the uniform step distribution on the natural set of generators, i.e.,

µ(±ei) =
1

2d
for i = 1, 2, · · · , d.

For random walks on Zd, it is customary to use additive rather than multiplicative notation
for the group operation; thus, we denote the random walk by

Sn =
n∑
i=0

ξi

where ξ1, ξ2, · · · are independent, identically distributed with common distribution µ.

Polya’s Theorem . The simple random walk on Zd is recurrent in dimensions d = 1, 2 and
transient in dimensions d ≥ 3.

Proof Sketch. Simple random walk on Zd can only return to 0 at even times, and the return
probabilities at even times obey the “local limit law”

P{S2n = 0} ∼ Cd
nd/2

,

where Cd is a positive constant depending on the dimension (see section 7.3 in the Ap-
pendix). Thus, the return probabilities are summable if and only if d > 2.

1.5 Random Walks on Homogeneous Trees

For ease of discussion, let’s limit our discussion to random walks on the free product group
Γ = Z2 ∗ Z2 ∗ Z2. Recall that the Cayley graph CΓ (with respect to the natural generating
set A = {a, b, c}) is the the homogeneous tree T3 of degree 3. The vertices of this tree are
identified with group elements, which in turn are finite, reduced words on the alphabet A
(reduced means that no letter appears twice in succession). The empty word ∅ is the group
identity, and can be viewed as the root vertex of the tree.

The edges of the tree T3 can be assigned labels from the alphabet A in a natural way, as
follows. For any two adjacent words (=vertices) w and w′, one is an extension of the other
by exactly one letter, e.g.,

w = x1x2 · · ·xm and
w′ = x1x2 · · ·xmxm+1.

For any such pairing, label the edge connecting w and w′ by the “color” xm+1. The edge-
colorings and the word representations of the vertices then complement each other, in that
for any word(=vertex) w = x1x2 · · ·xm, the letters xi indicate the sequence of edges crossed
along the unique self-avoiding path in the tree from ∅ to w.
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The step distribution of a nearest-neighbor random walk on Γ is a probability distri-
bution µ = {pa, pb, pc} on the alphabet A. The random walk Xn with step distribution µ
is irreducible if and only if each pi > 0. The main result of section 4 below will imply the
following.

Proposition 1.8. Every irreducible, nearest-neighbor random walk on the group Γ = Z2 ∗ Z2 ∗ Z2

is transient.

In the special case where the step distribution µ is the uniform distribution on A an
easy proof can be given, using the strong law of large numbers. (The random walk on Γ
with the uniform step distribution is said to be isotropic.)

Strong Law of Large Numbers . If ξ1, ξ2, · · · are independent, identically distributed real ran-
dom variables such that E|ξ1| <∞, then with probability 1,

lim
n→∞

n−1
n∑
i=1

ξi = Eξ1. (1.8)

Proof of Proposition 1.8 for Isotropic Random Walk. Let Xn be the isotropic nearest-neighbor
random walk on Γ, and set Zn = |Xn| where for any element w ∈ Γ we denote by |w| the
distance from w to the root ∅, i.e., the length of the reduced word w. It is easily checked that
the sequence Zn is a nearest-neighbor Markov chain on the set Z+ of nonnegative integers,
with transition probabilities

q(x, x+ 1) = 2/3 for x ≥ 1;

q(x, x− 1) = 1/3 for x ≥ 1;

q(0, 1) = 1.

The steps ζn+1 = Zn+1 − Zn of this Markov chain are independent, identically distributed
random variables ζn+1 except when Zn = 0, at which time the next increment must always
be +1. However, whenever Zn = 0 we are free to generate an independent (2

3 ,
1
3) coin

toss ζ ′n which the process Zn will ignore; setting ζ ′i = ζi for all other times i, we obtain a
sequence ζ ′n of i.i.d. random variables with common distribution

P{ζ ′n = +1} = 2/3,

P{ζ ′n = −1} = 1/3

such that

Zn ≥
n∑
i=1

ζ ′i.

The strong law of large numbers implies that the sums on the right side of this inequality
converge to +∞ almost surely. Consequently, the same must be true for the sequence Zn,
and so the random walk Xn will only return to the initial point 1 finitely often.
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1.6 Lamplighter Random Walks

Imagine an infinitely long street with streetlamps regularly placed, one at each integer
point. Each lamp can be either on or off (henceforth on will be denoted by 1 and off by 0).
At time 0, all lamps are off. A World Cup fan, who has perhaps been celebrating a bit too
long, moves randomly from streetlamp to streetlamp, randomly turning lamps on or off.
His2 behavior at each time n = 1, 2, · · · is governed by the following rules: he first tosses a
fair coin twice, then

(i) if HH he moves one step to the right;
(ii) if HT he moves one step to the left;

(iii) if TH he flips the switch of the lamp at his current configuration;
(iv) if TT he does nothing.

At any time n = 0, 1, 2, · · · , the state of the street is described by the pair Xn = (Sn, Ln),
where Sn is the position of the random walker, and Ln ∈ {0, 1}Z describes the current con-
figuration of the lamps. Note that at each time n, with probability 1, the lamp configuration
Ln has all but finitely many entries 0.

The lamplighter process (Sn, Ln) just described is, in fact, itself a symmetric, nearest-
neighbor random walk on a finitely generated group Γ known as the lamplighter group or
the wreath product G1 = Z o ⊕ZZ2, where ⊕ZZ2 is the additive group of 0− 1 configurations
on Z with only finitely many 1s. Elements of the group are pairs (x, ψ), where x ∈ Z and
ψ ∈ ⊕ZZ2; multiplication is defined by

(x, ψ) ∗ (y, ϕ) = (x+ y, σ−xψ + ϕ)

where the addition of configurations is entrywise modulo 2 and σ is the shft operator on
configurations. A natural set of generators is the 3-element set

{(1,0), (−1,0), (0, δ0)},

where 0 is the configuration of all 0s and δy is the configuration with a single 1 at location
x and 0s elsewhere. The step distribution of the random walk obeying (i)–(iv) above is the
uniform distribution on the 4-element set gotten by adding the identity (0, 0) to the set of
generators.

The lamplighter group is of interest in large part because it (and its higher-dimensional
analogues Gd := Zd ⊕Zd Z2) are amenable (see section 4 below) but have exponential growth
(see section 2.2).

Proposition 1.9. The lamplighter random walk on G1 is transient.

The proof is a bit involved, but requires only elementary probability inequalities, no-
tably the Hoeffding bound, which is discussed in the Appendix. There is, however, a simple
modification of the lamplighter random walk for which transience is much easier to prove.
In this random walk, the soccer hooligan behaves as follows. At each time n = 1, 2, 3, · · ·
he tosses a fair coin 3 times. The first toss tells him whether or not to flip the switch of the

2Nearly all soccer hooligans are male.
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lamp at his current position x; the second toss tells him whether to then move right or left
(to x+1 or x−1); and the third toss tells him whether or not to flip the switch of the lamp at
his new location. The state of the street at time n is once again described by a pair (Sn, Ln),
with Sn describing the hooligan’s position and Ln the configuration of the streetlamps. This
process (Sn, Ln) is no longer a nearest-neighbor random walk with respect to the natural
set of generators listed above, but it is a symmetric, nearest-neighbor random walk relative
to a different set of generators. (Exercise: Write out the list of generators for the modified
lamplighter random walk.)

Proposition 1.10. The modified lamplighter random walk (Sn, Ln) is transient.

Proof Sketch. The sequence of positions Sn is itself a simple random walk on Z. Define two
related sequences:

S+
n := max

m≤n
Sm and

S−n := min
m≤n

Sm.

Exercise 1.11. Prove that for each sufficiently small ε > 0 there exist δ > 0 and C <∞ such
that

P{S+
n − S−n ≤ nε} ≤ Cn−1−δ.

HINT: Divide the time interval [0, n] into thirds, and use the Local Central Limit Theorem
(alternatively, Stirling’s Formula) to estimate the probability that the change of Sj acoss any
one of these three intervals is less (in absolute value) than nε.

The relevance of the random variables S+
n and S−n is this: at each time the hooligan

leaves a site, he randomizes the state of the lamp at that site. Thus, conditional on the
trajectory (Sm)m≤n, the distribution of the configuration in the segment [S−n , S

+
n ] will be

uniform over all possible configurations, of which there are 2S
+
n−S−n +1. Therefore,

P{(Sn, Ln) = (0,0)} ≤ P{S+
n − S−n ≤ nε}+

1

2nε ≤ Cn−1−δ +
1

2nε .

This sequence is summable, so Polya’s criterion implies that the random walk is transient.

2 Speed, Entropy, and Laws of Large Numbers

2.1 Speed

Every nearest-neighbor random walk on a finitely generated group travels at a definite
speed (possibly 0): this is the content of our first major theorem. Furthermore, this is true
relative to any metric on the group, not just the word metric, although the speed will
depend on both the metric d and the step distribution µ of the random walk.
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Theorem 2.1. For any nearest-neighbor random walk Xn on a finitely generated group Γ, and for
any metric d on Γ, with probability one,

lim
n→∞

d(Xn, 1)

n
= inf

n≥1

Ed(Xn, 1)

n
. (2.1)

In the special case when d is the word metric, we set

` := inf
n≥1

Ed(Xn, 1)

n
, (2.2)

and call this constant the speed of the random walk.

In section 2.3 we will prove a weaker statement than (2.1), specifically, that d(Xn, 1)/n
converges to ` in probability. Almost sure convergence is a bit more subtle (but can still be
carried out by elementary arguments). Theorem 2.1 can be viewed as an extension of the
usual strong law of large numbers for random walks on Z to arbitrary discrete groups.

The strong law of large numbers, applied componentwise, implies that for any random
walk on Zd whose step distribution is symmetric and has finite first moment, the speed is
0, because symmetry implies that Eξ1 = −Eξ1 = 0. It is not always true, though, that a
symmetric random walk on a finitely generated group has speed 0 — the isotropic nearest-
neighbor random walk on Γ = Z2 ∗ Z2 ∗ Z2, as we have seen, has speed 1

3 . This suggests
an obvious question: for which symmetric random walks, on which groups, is the speed 0,
and for which is it positive? One of our main goals in these lectures will be to answer this
question, at least partially.

2.2 Subadditivity

A sequence an of real numbers is said to be subadditive if for every pair m,n of indices,

am+n ≤ an + am.

Exercise 2.2. Show that for any subadditive sequence an,

α := lim
n→∞

an
n

= inf
n≥1

an
n
≥ −∞.

Example 2.3. Let Γ be a finitely generated group with associated Cayley graph GΓ. Define
Bn to be the ball of radius n in CΓ with center at the group identity 1; thus, Bn contains
all group elements x such that w(x) ≤ n. Because Γ is finitely generated, each ball Bn
contains only finitely many group elements. Furthermore, by the triangle inequality, for
any integers m,n ≥ 0,

|Bn+m| ≥ |Bn||Bm|.
Thus, the sequence − log |Bn| is subadditive, and so the limit

β := lim
n→∞

log |Bn|
n

(2.3)

exists and is nonnegative. The quantity β is known as the exponential growth rate of the
group relative to the generating set A. Clearly, β ≤ log 2g, where 2g is the number of
generators (= number of nearest neighbors of 1 in the Cayley graph).
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Exercise 2.4. It is easily checked that the exponential growth rate of Zd is 0, while the
exponential growth rate of the tree Td is log(d − 1). What is the exponential growth rate
of the lamplighter group Z o ZZ

2 ? NOTE: There are two natural generating sets for the
lamplighter group. The exponential growth rate will depend on which generating set is
used.

Associated with any nearest-neighbor random walk Xn on a finitely generated group Γ
are a number of important subadditive sequences. The limit constants α for these sequences
are invariants of basic interest.

Example 2.5. For any metric d on the group Γ, the sequence Ed(Xn, 1) is subadditive.
Consequently, the limit

`(d) := lim
n→∞

Ed(Xn, 1)

n
(2.4)

exists and satisfies 0 ≤ `(d) < ∞. If d is the word metric and the random walk is nearest-
neighbor, then ` = `(d) ≤ 1.

Example 2.6. The word metric (i.e., the usual graph distance in the Cayley graph) is the
first that comes to mind, but it is not the only metric on Γ of interest. Here is another, the
Green metric, which is defined for any symmetric, transient random walk. For x ∈ Γ, define

u(x) = P{Xn = x for some n ≥ 0}.

Clearly, u(xy) ≥ u(x)u(y) for any elements x, y ∈ Γ, because the random walker can reach
xy by first going to x and then to xy, and so the function

dG(x, y) := − log u(x−1y)

is a metric. (Observe that the hypothesis of symmetry guarantees that dG(x, y) = dG(y, x).)
The limit

γ := lim
n→∞

EdG(Xn, 1)

n
(2.5)

is a measure of the the exponential rate of “breakup” of the group as seen by the random
walk.

Example 2.7. Let pn(1, 1) = P{Xn = 1} be the n−step return probability for a random
walk Xn with period d. If d ≥ 2, return to the initial point 1 will only be possible at times
which are integer multiples of d, so let’s consider the subsequence pdn(1, 1). Since the event
of return at time dm+ dn contains the event that the random walk returns at time dm and
then again at time dn+ dm, the sequence of return probabilities is super-multiplicative, that
is, pdm+dn(1, 1) ≥ pdm(1, 1)pdn(1, 1). Consequently, the limit

% := lim
n→∞

pdn(1, 1)1/dn ≤ 1 (2.6)

exists. This limit % is called the spectral radius of the random walk; it will be studied in
section 4 below.
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Example 2.8. Denote by µ the step distribution of the random walk and by µ∗n its nth
convolution power, that is, µ∗n(x) = P{Xn = x}. Consider the random variable µ∗n(Xn)
gotten by evaluating the function µ∗n at the random point Xn: this should be thought of
as the conditional probability that a second, independent random walk X ′n, started at the
group identity 1 and run for the same number n of steps, would end up at the same location
as the first. Since the event {X ′m+n = Xm+n} contains the event {X ′m = Xm} ∩ {X ′m+n =
Xm+n}, we have

µ∗(m+n)(Xm+n) ≥ µ∗m(Xm)µ∗n(Xn),

so the sequence −E logµ∗n(Xn) is subadditive.3 The limit

h := lim
n→∞

−E logµ∗n(Xn)

n
(2.7)

is called the Avez entropy of the random walk.

Exercise 2.9. (A) Show that for a symmetric random walk, if the spectral radius is strictly
less than 1 then the Avez entropy is strictly positive. (B) Show that for the asymmetric
p, q random walk on the integers Z (i.e., the random walk that at each step jumps +1 with
probability p and −1 with probability q) the spectral radius is less than 1 but the Avez
entropy is 0. HINT: For (B) you will want to use the Hoeffding inequality. See section 7.2 for
the statement.

Exercise 2.10. Show that if a random walk has positive entropy h, then its lazy version also
has positive entropy.

Exercise 2.11. Show that the speed, Avez entropy, and the exponential growth rate of the
group satisfy the basic inequality

h ≤ β`.

One of the interesting open problems in the subject is to characterize those groups for which
equality can hold in this relation. HINT: Show that the Shannon entropy of a probability
measure on a finite set Y is maximal for the uniform distribution. Note: The Shannon
entropy of a probability measure ν on Y is defined (cf. section 6.1 below) by

H(µ) := −
∑
y∈Y

ν(y) log ν(y).

Exercise 2.12. Assume that P{X1 = 1} > 0. This assumption ensures that if µ∗n(y) > 0
then µ∗(n+1)(y) > 0.

(A) Show that for each α ≥ 1 the limit

ψ(α) := − lim
n→∞

(αn)−1E logµ∗[αn](Xn) exists.

(B) Show that the function ψ(α) (called the entropy profile) is convex.
(C) Show that limα→∞ ψ(α) = − log % where % = spectral radius.
(D) What is the entropy profile of the simple random walk on Z?

3For any group element x such that P{Xn = x} > 0 it must be the case that µ∗n(x) ≥ ηn, where η > 0 is
the minimum of µ(y) over all y ∈ Γ such that µ(y) > 0. Hence, the random variable− logµ∗n(Xn) is bounded
above by − log η, and so the expectation −E logµ∗n(Xn) is well-defined.
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2.3 Subadditive Law of Large Numbers

In several of the examples presented in the preceding section, the entries of the subadditive
sequence an were obtained by taking the expectation of a functionwn of the first n entries of
the sequence ξ1, ξ2, · · · of steps of the random walk. In each case the functionswn satisfied a
natural system of inequalities that led to the subadditivity of the expectations. This pattern
presents itself sufficiently often that it deserves a name.

Definition 2.13. A sequence of functions wn : Yn → R is subadditive if for any sequence
y1, y2, y3, · · · ∈ Y and each pair m,n of nonnegative integers,

wn+m(y1, y2, · · · , ym+n) ≤ wm(y1, y2, · · · ym) + wn(ym+1, ym+2, · · · , ym+n). (2.8)

Theorem 2.14. If Y1, Y2, · · · is a sequence of independent, identically distributed random vari-
ables taking values in a (measurable) space Y, and if wn : Yn → R is a subadditive sequence of
(measurable) functions such that

E(w1(Y1))+ <∞

then with probability one,

lim
n→∞

wn(Y1, Y2, · · · , Yn)

n
= inf

m≥1

Ewm(Y1, Y2, · · · , Ym)

m
:= α. (2.9)

The conclusion holds more generally when the sequence Y1, Y2, · · · is a stationary, ergodic
sequence. This generalization is known as Kingman’s subadditive ergodic theorem.

In all of the applications below, the space Y will be a finite set – in most cases, Y can be
taken to be the set of generators of the group Γ in which the random walk lives. When Y is
finite, measurability is automatic (relative to the maximal sigma algebra on Y), and since
the random variables wn(Y1, Y2, · · · , Yn) take only finitely many values they all have finite
first moments. It is still possible, though, that the limit α in (2.9) could be −∞ (for instance,
if wn ≡ −n2).

Proof of Theorem 2.14. We will prove only the weaker statement that the random variables

wn(Y1, Y2, · · · , Yn)/n

converge in probability to the constant α, and only under the more restrictive hypothesis
that the function |w1| is bounded. This hypothesis holds for the subadditive sequences
exhibited in each of the examples discused in section 2.2, provided the random walk in
question has step distribution supported by a finite generating set of the group Γ. Without
loss of generality we can assume that |w1| ≤ 1, because multiplying all of the functions wn
by a scalar does not affect the validity of the result. This implies, by subadditivity, that for
every n ≥ 1 and all yi ∈ Y,

|wn(y1, y2, · · · , yn)| ≤
n∑
i=1

|w1(yi)| ≤ n.
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For notational ease, let’s use the abbreviation

W (m;n) = wn(Ym+1, Ym+2, · · · , Ym+n);

then the subadditivity relation reads

W (0;mn) ≤
m−1∑
i=0

W (in;n) or, more generally,

W (0;mn+ k) ≤
m−1∑
i=0

W (in;n) +W (mn; k).

The crucial fact here is that for each choice of n ≥ 1 the random variables (W (in;n))i=0,1,···
are independent and identically distributed. Thus, the strong law of large numbers implies
that for each n ≥ 1, with probability one,

lim sup
m→∞

max
0≤k<n

W (0;mn+ k)

mn
≤ lim

m→∞

{
(mn)−1

m−1∑
i=0

W (in;n) + (mn)−1n

}
=
EW (0;n)

n
.

Here we have used the hypothesis that |W (j; k)| ≤ k to bound the term (mn)−1W (mn; k)
in the subadditivity relation. It now follows that for each n ≥ 1, with probability one,

lim sup
m→∞

W (0;m)

m
≤ EW (0;n)

n
,

and therefore

lim sup
m→∞

W (0;m)

m
≤ α := inf

n≥1

EW (0;n)

n
almost surely. (2.10)

To complete the argument we must show that the random variables W (0;m)/m can-
not drop much below α with any appreciable probability. For this, we will rely on the
hypothesis that |w1| ≤ 1, which by subadditivity implies that for each m ≥ 1 we have
|W (0;m)| ≤ m. Fix ε > 0; by relation (2.10), if m is sufficiently large then

P{W (0;m)/m > α+ ε} ≤ ε.

Since |W (0;m)| ≤ m, it follows that for any δ > 0,

EW (0;m) = EW (0;m)1{−mδ ≤W (0;m)−mα ≤ mε}
+ EW (0;m)1{W (0;m) > mα+mε}
+ EW (0;m)1{W (0;m) < mα−mδ}
≤ mα+mε+mε−mδP{W (0;m) < mα−mδ}.

But EW (0;m) ≥ mα, by definition of α, so we must have, for all sufficiently large m, that

δP{W (0;m) < mα−mδ} < 2ε.

Since ε can be chosen arbitrarily small relative to δ, it follows that

lim
m→∞

P{W (0;m) < mα−mδ} = 0.
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Corollary 2.15. Let Xn be a nearest-neighbor random walk on a finitely generated group Γ, with
step distribution µ. Let d be the word metric and dG be the Green metric. Then as n→∞,

d(Xn, 1)/n
P−→ ` := inf

m≥1
Ed(Xm, 1)/m;

dG(Xn, 1)/n
P−→ γ := inf

m≥1
EdG(Xm, 1)/m; and

− logµ∗n(Xn)/n
P−→ h := inf

m≥1
(−E logµ∗n(Xn)/n)

2.4 The Kesten-Spitzer-Whitman Theorem

Another interesting subadditive sequence associated with a random walk Xn = ξ1ξ2 · · · ξn
on a group is the sequence Rn (for range) that counts the number of distinct sites visited by
time n, formally,

Rn := |{X0, X1, · · · , Xn}| = |{1, ξ1, ξ1ξ2, · · · , ξ1ξ2 · · · ξn}| (2.11)

The subadditive law of large numbers (Theorem 2.14) implies that for any random walk on
any group, the averages Rn/n converge almost surely to inf ERm/m. Kesten, Spitzer, and
Whitman showed that this limit has an interesting interpretation.

Theorem 2.16. For any random walk Xn on any group,

lim
n→∞

Rn
n

= P{no return to 1} := P{Xn 6= 1 ∀n ≥ 1} almost surely. (2.12)

Recall that a random walk Xn on a finitely generated group is recurrent if and only
if the probability of return to the initial point is 1, equivalently, if P{no return to 1} = 0.
Consequently, the Kesten-Spitzer-Whitman theorem implies thatXn is recurrent if and only
if the range Rn grows sublinearly with n.

Corollary 2.17. Any irreducible random walk Sn =
∑n

i=1 ξi on the integers Z whose step distri-
bution has finite first moment E|ξ1| and mean Eξ1 = 0 is recurrent.

Note: It is not required that the random walk be nearest-neighbor, or even that the step
distribution have finite support. In fact, both the corollary and the KSW theorem hold
not only for random walks with independent, identically distributed steps ξi, but more
generally for random walks whose steps ξi form an ergodic, stationary sequence.

Proof of the Corollary. If Eξi = 0, then the strong law of large numbers implies that the
sequence Sn/n converges to 0 almost surely. This implies that for any ε > 0, all but at most
finitely many terms of the sequence Sn/n will fall in the interval (−ε, ε); and this in turn
implies that for large n the range Rn will satisfy

Rn ≤ 2nε.

Since ε > is arbitrary, it follows that Rn/n → 0. By the KSW theorem, the random walk
must be recurrent.

18



Proof of the KSW Theorem. By the subadditive law of large numbers, Rn/n → inf ERm/m,
so it suffices to show that the expectations ERn/n converge to P{no return to 1}. Now Rn
is the number of distinct sites visited by time n; these are in one-to-one correspondence
with the times j ≤ n that the random walk is at a site Xj that will not be visited again by
time n. Hence,

Rn =
n∑
j=0

1{Xj not revisited by time n}

≥
n∑
j=0

1{Xj never revisited}

=

n∑
j=0

1{ξj+1ξj+2 · · · ξj+m 6= 1 ∀µ ≥ 1}.

Since the random variables ξ1, ξ2, · · · are i.i.d., the events in the last sum all have the same
probability, specifically, the probability that the random walk never returns to its initial site
1. Thus, taking expectations and letting n→∞ gives

lim inf
n→∞

ERn/n ≥ P{no return to 1}.

A similar argument proves the upper bound. Fix an integer K ≥ 1; then for any
0 ≤ j ≤ n−K, the event that Xj is not revisited by time n is contained in the event that Xj

is not revisited in the K steps following time j. Consequently,

Rn =

n∑
j=0

1{Xj not revisited by time n}

≤
n−K∑
j=0

1{Xj 6= Xj+i ∀ 1 ≤ i ≤ K}+K.

Once again, the events in the sum all have the same probability, so taking expectations,
dividing by n, and then letting n→∞ yields

lim supERn/n ≤ P{1 6= Xi ∀ 1 ≤ i ≤ K}.

Since K is arbitrary, it follows that

lim supERn/n ≤ inf
K≥1

P{1 6= Xi ∀ 1 ≤ i ≤ K} = P{no return to 1}.

3 The Carne-Varopoulos Inequality

3.1 Statement and Consequences

In 1985 N. VAROPOULOS discovered a remarkable upper bound for the n−step transition
probabilities of a reversible Markov chain, and shortly afterward T. K. CARNE found an
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elegant short proof. Every symmetric nearest-neighbor random walk on a finitely generated
group is a reversible Markov chain, so Varopoulos’ inequality applies; the upshot is as
follows.

Theorem 3.1. Let Xn be a symmetric, nearest-neighbor random walk on a finitely generated group
Γ with word metric d (i.e., the usual metric on the Cayley graphCΓ). Let % = limP 1{X2n = 1}1/2n
be the spectral radius of the random walk. Then for every element x ∈ Γ and every n ≥ 1,

P 1{Xn = x} ≤ 2%n exp{−d(1, x)2/2n} (3.1)

The hypothesis of symmetry is crucial: the theorem fails badly for non-symmetric
random walks. Consider, for instance the random walk on Z that at each step moves +1 to
the right.

Before turning to the proof of the Carne-Varopoulos inequality, let’s look at one of its
implications.

Corollary 3.2. If Xn is a symmetric, nearest-neighbor random walk on a finitely generated group
Γ with speed ` and Avez entropy h, then

h ≥ `2/2− log % (3.2)

Proof. By Corollary 2.15, for any ε > 0 and all sufficiently large n the probability will be
nearly 1 that the distance d(Xn, 1) will lie in the range n` ± nε. By the Carne-Varopoulos
inequality, for any group element x at distance n`± nε from the group identity 1,

P{Xn = x} ≤ 2%n exp{−d(x, 1)2/2n} ≤ 2%n exp{−n(`− ε)2/2}.

Thus, with probability approaching 1 as n→∞,

µ∗n(Xn) ≤ 2%n exp{−n(`− ε)2/2}.

Since ε > 0 is arbitrary, the inequality (3.2) follows.

Corollary 3.2 implies that a random walk can have positive speed only if it also has
positive Avez entropy. The next result shows that the converse is also true.

Proposition 3.3. For any symmetric, nearest-neighbor random walk on a finitely generated group,

` > 0 ⇐⇒ h > 0.

Proof. Recall (Example 2.3) that any finitely generated group Γ has at most exponential
growth: in particular, there is a constant β ≥ 0 such that for large n the cardinality of
the ball Bn of radius n satisfies log |Bn| ∼ nβ. If a symmetric random walk Xn on Γ has
speed ` = 0, then for any ε > 0 and all sufficiently large n the distribution of the random
variable Xn will be almost entirely concentrated in Bεn, by Corollary 2.15. But since Bεn
contains at most e2βεn distinct group elements (for large n), it follows that with probability
approaching 1,

µ∗n(Xn) ≥ exp{−2βεn}.

Since ε > 0 is arbitrary, it follows that h = 0.
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An easy modification of this argument (exercise!) yields the following related result.

Proposition 3.4. If a finitely generated group Γ has growth constant β = 0 then every nearest-
neighbor random walk on Γ has entropy h = 0, and consequently, every symmetric, nearest-
neighbor random walk on Γ has speed 0.

3.2 Markov Operators

The 1−step transition probabilities of a random walk on an infinite, finitely generated group
Γ are the entries of an infinite matrix M = (p(x, y))x,y∈Γ called the transition probability
matrix of the random walk. The advantage of viewing the transition probabilities p(x, y)
as matrix entries stems from the fact that the n−step transition probabilities pn(x, y), for
any integer n ≥ 0, are the entries of the matrix Mn obtained by multiplying M by itself n
times. (This is easily proved by induction on n.) Henceforth, we will identify M with the
corresponding linear operator on the Hilbert space L2(Γ) of real-valued, square-summable
functions on Γ. This operator is usually called the Markov operator associated with the
random walk.

Definition 3.5. For any finitely generated group Γ define L2(Γ) to be the real Hilbert space
of square-summable functions f : Γ→ R with norm and inner product

‖f‖22 :=
∑
x∈Γ

f(x)2 and 〈f, g〉 :=
∑
x∈Γ

f(x)g(x). (3.3)

For a nearest-neighbor random walk Xn on Γ with 1−step transition probabilities p(x, y)
define the associated Markov operator M : L2(Γ)→ L2(Γ) by

Mf(x) := Exf(X1) = Ef(xX1) =
∑
y∈Γ

p(x, y)f(y). (3.4)

Properties of the Markov Operator:

(M1) M is linear.
(M2) ‖f‖2 ≤ 1 implies ‖Mf‖2 ≤ 1.
(M3) Mnf(x) = Exf(Xn) =

∑
y∈Γ pn(x, y)f(y).

(M4) pn(x, y) = 〈δx,Mnδy〉.
(M5) If p(x, y) = p(y, x) ∀x, y ∈ Γ then 〈f,Mng〉 = 〈Mnf, g〉.

Here δz denotes the function that takes the value 1 at z and 0 elsewhere. Properties
(M1)–(M5) are all easily checked. Property (M2) asserts that M has operator norm bounded
by 1; later we will show that for symmetric random walks the operator norm ofM coincides
with the spectral radius %.

Property (M5), symmetry, is of essential importance to Carne’s proof of the Carne-
Varopoulos inequality (3.1), as it permits use of the Spectral Theorem for bounded, self-
adjoint operators (see, for instance, REED & SIMON, Functional Analysis, vol. 1). To avoid
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using this theorem, or any other deep results from the theory of linear operators on infinite-
dimensional Hilbert spaces, we will employ a simple projection trick that will allow us
to deduce everything we need about the spectral properties of M from finite-dimensional
linear algebra.

Assumption 3.6. Assume henceforth that the random walk is symmetric.

For each k = 1, 2, · · · let Vk be the finite-dimensional linear subspace of L2(Γ) consisting
of those functions f which vanish outside the ball Bk of radius k centered at the group
identity 1. Define Pk to be the orthogonal projection operator for this subspace, that is, for
each g ∈ L2(Γ), set

Pkg(x) = g(x) if x ∈ Bk;
= 0 if x 6∈ Bk.

Next, define Mk to be the restriction of M to Vk, that is,

Mk = PkMPk.

Clearly, Mk maps Vk into Vk. Furthermore, since the underlying random walk is symmetric,
each Mk is a symmetric linear operator on Vk. Explicitly, for any x ∈ Bk,

Mkg(x) =
∑
y∈Bk

p(x, y)g(y),

which exhibits Mk : Vk → Vk as the symmetric linear transformation with matrix represen-
tation (p(x, y))x,y∈Bk

relative to the natural basis δx for Vk.

Lemma 3.7. The norms of the operators Mk are non-decreasing in k, and

‖M‖ = lim
k→∞

‖Mk‖. (3.5)

Note: By definition, the norm of an operator T : V → V on a real inner product space V is
‖T‖ = sup‖v‖≤1 ‖Tv‖, where the sup extends over all vectors of norm ≤ 1.

Exercise 3.8. Prove Lemma 3.7. HINT: For the first assertion, use the fact that the vector
spaces Vk are nested, that is, V1 ⊂ V2 ⊂ · · · .

Since the operators Mk are finite-dimensional and symmetric, they fall under the au-
thority of the Spectral Theorem for finite-dimensional symmetric matrices. Recall what this
says:

Spectral Theorem . For any symmetric linear operator L : V → V on a finite-dimensional real
inner product space V there exist a complete orthonormal basis {ui}i≤D of V and a corresponding
set {λi}i≤D of real numbers such that for every v ∈ V ,

Lv =
D∑
i=1

〈v, ui〉λiui. (3.6)
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Easy Consequences:

(Sp1) Lui = λiui.
(Sp2) Lnv =

∑
i≤D〈v, ui〉λni ui.

(Sp3) ‖L‖ := max‖v‖≤1 ‖Lv‖ = maxi≤D |λi|.
The quantity maxi≤D |λi| is the spectral radius of the operator L. Assertion (Sp3) states

that the norm and the spectral radius of a symmetric, finite-dimensional linear operator
coincide. Using this together with Lemma 3.7, we can now identify the norm of the Markov
operator M .

Proposition 3.9. The Markov operator M of a symmetric, nearest-neighbor random walk on a
finitely generated group satisfies

‖M‖ = % := lim
n→∞

p2n(1, 1)1/2n. (3.7)

Proof. By property (M4), the return probabilities satisfy

pn(1, 1) = 〈δ1,M
nδ1〉 ≤ ‖δ1‖22 ‖Mn‖ = ‖M‖n.

Hence, the spectral radius % cannot be larger than ‖M‖, so to prove the proposition it
suffices to show that ‖M‖ cannot be larger than %. In doing so, we may assume without
loss of generality that the random walk has a positive holding probability ε = p(1, 1) >
0, because increasing the probability p(1, 1) by ε has the effect of changing the Markov
operator from M to (1− ε)M + εI , which changes neither the norm nor the spectral radius
by more than a negligible amount when ε is small.

Exercise 3.10. Check this.

By Lemma 3.7, the norm ‖M‖ is the increasing limit of the norms ‖Mk‖; thus, it suffices
to show that for each k,

‖Mk‖ ≤ %.

By the Spectral Theorem, the norm ‖Mk‖ coincides with the magnitude of the largest
eigenvalue |λ1|. Denote the corresponding normalized eigenfunction by f1; by definition
of Mk, the support of f1 must be contained in the ball Bk. Moreover, since the entries of the
matrix Mk are nonnegative, the eigenfunction f1 must also be nonnegative, because

‖Mk‖ = |〈f1,Mkf1〉| ≤ 〈|f1|,Mk|f1|〉,

and if the inequality were strict then we would have a contradiction to the definition of
‖Mk‖. Consequently, for each n ≥ 1,

‖Mk‖n = 〈f1,M
n
k f1〉 (3.8)

≤ 〈f1,M
nf1〉

=
∑
x∈Bk

∑
y∈Bk

f1(x)f1(y)pn(x, y)
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Claim: If p(1, 1) > 0 then there exist an integer m ≥ 0 and a constant C <∞ such that for
all n ≥ 1 and all x, y ∈ Bk,

pn(x, y) ≤ Cpn+m(1, 1).

Exercise: Prove this. HINT: The random walk is irreducible.

Given the claim, we now conclude that for any n ≥ 1,∑
x∈Bk

∑
y∈Bk

f1(x)f1(y)pn(x, y) ≤ Cpn+m(1, 1)
∑
x∈Bk

∑
y∈Bk

f1(x)f1(y).

Taking nth roots in (3.8) and letting n→∞, we obtain the desired inequality ‖Mk‖ ≤ %.

Ultimately, our interest in the Markov operator M stems from property (M4), which
gives an explicit formula for the n−step transition probabilities pn(x, y) in terms of the
iterates Mn. The Spectral Theorem enters the picture because it provides a representation
of Mn in terms of the spectral properties of M , by way of the formula (Sp2) for L = Mk. To
complete the connection, we must establish some relation between the powers Mn of the
Markov operator and the corresponding powers Mn

k of the finite-dimensional truncations.

Lemma 3.11. If k > n ≥ 1 and x ∈ Bn, then 〈δ1,M
nδx〉 = 〈δ1,M

n
k δx〉.

Proof Sketch. Multiplication by the nth power of a matrix (finite or infinite) can be inter-
preted as a sum over paths. In particular,

〈δ1,M
nδx〉 =

∑
1=x0,x1,··· ,xn=x

n∏
i=1

p(xi−1, xi) and

〈δ1,M
n
k δx〉 =

∑
1=x0,x1,··· ,xn=x :xi∈Bk

n∏
i=1

p(xi−1, xi).

Here the sums extend over all paths in Γof length n beginning at x0 = 1 and ending at
xn = x; the second sum (in the equation for 〈δ1,M

n
k δx〉) is restricted to paths that do not

exit the ball Bk. But since p(u, v) > 0 only for nearest-neighbor pairs u, v ∈ Γ, all paths in
the first sum for which the product

∏
p(xi−1, xi) is non-zero must remain in the ball Bk.

Consequently, the two sums are identical.

3.3 Chebyshev Polynomials

Definition 3.12. The nth Chebyshev polynomial of the first kind is the unique nth degree
polynomial Tn(x) with real (actually, integer) coefficients such that

Tn(cos θ) = cos(nθ). (3.9)
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The first few are

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x.

Note for later reference that the defining identity (3.9) implies that

|Tn(x)| ≤ 1 for every x ∈ [−1, 1]. (3.10)

Exercise 3.13. Take 30 seconds to convince yourself that polynomials satisfying the iden-
tities (3.9) exist and are unique. If you want to know more, check the article at math-
world.wolfram.com.

The sudden appearance of these obscure special functions in a series of lectures devoted
to random walks on groups has a bit of the rabbit-out-of-a-hat character. However, the next
result shows that there is a natural connection between the Chebyshev polynomials and
simple random walk on Z.

Proposition 3.14. Let (Sn)n≥0 be the simple random walk on Z; then for every n = 0, 1, 2, · · ·

xn =
∑
m∈Z

P{Sn = m}Tm(x). (3.11)

Proof. This is simply a reformulation of the fact that the characteristic function (i.e., Fourier
transform) of the random variable Sn is the nth power of the characteristic function of S1.
In detail: first, writing Sn =

∑n
j=1 ξj , we have

EeiθSn = E exp{iθ
n∑
j=1

ξj}

=

n∏
j=1

E exp{iθξj}

= (Eeiθξ1)n

= (cos θ)n

This uses the fact that the increments ξj are independent and identically distributed. Next,
express the same characteristic function as a sum over possible values of Sn:

EeiθSn =
∑
m∈Z

eiθmP{Sn = m}

=
∑
m∈Z

1

2
(e+iθm + e−iθm)P{Sn = m}

=
∑
m∈Z

cos(mθ)P{Sn = m}

=
∑
m∈Z

Tm(cos θ)P{Sn = m}.
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Here, in the second equality, we have used the symmetry of the simple random walk, which
implies that P{Sn = +m} = P{Sn = −m}. It now follows that for every real θ,

(cos θ)n =
∑
m∈Z

Tm(cos θ)P{Sn = m}.

This implies that the polynomials on the left and right sides of equation (3.11) agree at
infinitely many values of x, and so they must in fact be the same polynomial.

Since (3.11) is a polynomial identity, one can substitute for the variable x any element of
a module over the reals, in particular, we can use the identity for x = L, where L : V → V
is a symmetric linear operator on a real vector space V :

Ln =
∑
m∈Z

Tm(L)P{Sn = m}. (3.12)

Now Tm(L) is nothing more than a linear combination of powers Lk of L; moreover, since
the polynomial Tm(x) has real coefficients, the linear operator Tm(L) is symmetric. By
(Sp2), if L has spectral decomposition (3.6), then for any v ∈ V

Lkv =
∑
i≤D
〈v, ui〉λki ui;

consequently,
Tm(L)v =

∑
i≤D
〈v, ui〉Tm(λi)ui.

This shows that Tm(L) is not only symmetric, but has spectral decomposition with the
same orthonormal basis of eigenvectors ui, and corresponding eigenvalues Tm(λi). Now
recall that the eigenvalues λi of a symmetric linear operator L are real, and that ‖L‖ =
maxi≤D |λi|. Thus, if L has operator norm≤ 1, then every eigenvalue λi ∈ [−1, 1]; therefore,
by inequality (3.10), for every eigenvalue λi and every integer m ≥ 0,

|Tm(λi)| ≤ 1.

Finally, using the relation between operator norm and spectrum in the reverse direction,
we conclude that for every m ≥ 0 the operator norm of Tm(L) satisfies

‖Tm(L)‖ ≤ 1. (3.13)

3.4 Proof of the Carne-Varopoulos Inequality

In view of Proposition 3.9, it suffices to prove that

P 1{Xn = x} ≤ 2‖M‖n exp{−d(1, x)2/n}. (3.14)

This we will accomplish by exploiting the fact (cf. (M4) and Lemma 3.11) that for any x ∈ Γ
and any k ≥ n+ 1,

P 1{Xn = x} = 〈δ1,M
nδx〉 = 〈δ1,M

n
k δx〉.
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Recall that the matrix entries of Mn are the n−step transition probabilities pn(x, y).
Since the random walk Xn is, by hypothesis, nearest-neighbor, the n−step transition proba-
bility pn(x, y) must be 0 if n < d(x, y). Now the matrix entries ofMn

k are dominated by those
of Mn (cf. the proof of Lemma 3.11), so it follows that if n < d(x, y) then 〈δx,Mn

k δy〉 = 0.
Finally, since the Chebyshev polynomial Tn(x) has degree n, the operator Tn(Mk) contains
only powers of Mk up to n; consequently,

d(1, x) > n =⇒ 〈δ1, Tn(Mk)δx〉 = 0.

Let M̂k = Mk/‖M‖. By Lemma 3.7, the operator M̂k has norm≤ 1, and so by inequality
(3.13), for each n ≥ 0 the operator norm of Tn(M̂k) is bounded by 1. Now by the inversion
formula for Chebyshev polynomials (cf. Proposition 3.14 and equation (3.12)), if Sn is the
simple random walk on Z then

‖M‖−n〈δ1,M
n
k δx〉 = 〈δ1, M̂

n
k δx〉

=
∑
m∈Z

P{Sn = m}〈δ1, T|m|(M̂k)δx〉

=
∑

|m|≥d(1,x)

P{Sn = m}〈δ1, T|m|(M̂k)δx〉

≤
∑

|m|≥d(1,x)

P{Sn = m}‖δ1‖2 ‖δx‖2 ‖T|m|(M̂k)‖

≤
∑

|m|≥d(1,x)

P{Sn = m}

= P{|Sn| ≥ d(1, x)}.

Finally, HOEFFDING’s inequality implies that

P{|Sn| ≥ d(1, x)} ≤ 2 exp{−d(1, x)2/n},

and so (3.14) follows.

4 Amenability, Nonamenability, and Return Probabilities

4.1 Amenable and Nonamenable Groups

Let G = (V, E) be a connected, locally finite graph. (Locally finite means that every vertex
v ∈ V is incident to at most finitely many edges; equivalently, no vertex has infinitely many
nearest neighbors.) For any finite set F ⊂ V , denote by ∂F the set of all vertices y 6∈ F such
that y is a nearest neighbor of some verrtex x ∈ F .

Definition 4.1. The isoperimetric constant ι(G) is defined by

ι(G) := inf
F finite

|∂F |
|F |

. (4.1)
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Exercise 4.2.

(A) Show that the isoperimetric constant of Zd is 0.
(B) Find the isoperimetric constant of the homogeneous tree Td.
(C) Show that the isoperimetric constant of the d−dimensional lamplighter group G1 =

Zd o ⊕ZdZ2 is 0, for every d ≥ 1.

Definition 4.3. A finitely generated group Γ is amenable (respectively, nonamenable) if its
Cayley graph GΓ (relative to any finite, symmetric set of generators) has isoperimetric
constant ι(GΓ) = 0 (respectively, ι(GΓ) > 0).

It is not difficult to show that if the isoperimetric constant is 0 for some finite set of
generators then it is 0 for every finite set of generators. Therefore, amenability (or nona-
menability) is a property of the group, not of the particular Cayley graph chosen. For a
nonamenable group, of course, the isoperimetric constants might be different for different
Cayley graphs; but for every Cayley graph, the isoperimetric constant must be positive.

The distinction between amenable and nonamenable groups is of fundamental impor-
tance in representation theory and geometric group theory. It also plays a basic role in
random walk theory; the following celebrated theorem of H. KESTEN explains why.

Theorem 4.4. Every symmetric, nearest-neighbor random walk on a finitely generated amenable
group has spectral radius 1, and every irreducible, symmetric, nearest-neighbor random walk on a
finitely generated nonamenable group has spectral radius < 1.

The hypothesis of irreducibility is obviously necessary, because if the step distribution
of the random walk has full support in an amenable subgroup then the random walk would
have spectral radius 1, by the first assertion of the theorem.4

Recall that the spectral radius and the entropy of a symmetric random walk obey the
inequality h ≥ − log %. Thus, we have the following immediate corollary.

Corollary 4.5. Every symmetric, nearest-neighbor random walk on a finitely generated nona-
menable group has positive Avez entropy and hence also positive speed.

Recall also that if a finitely generated group Γ has sub-exponential growth (i.e., β = 0 in
relation (2.3)) then every nearest-neighbor random walk on Γ has entropy 0. This implies

Corollary 4.6. Every finitely generated group Γ with sub-exponential growth is amenable.

Exercise 4.7. Give a direct proof that the modified lamplighter random walk (see section 1.6)
on the lamplighter group Z o ZZ

2 has spectral radius 1. (Note: In Exercise 2.4 you showed
that the lamplighter group has exponential growth, and in Exercise 4.2 you showed that
the lamplighter group is amenable. Consequently, Kesten’s theorem already implies that
the spectral radius of the lamplighter random walk is 1. The point of this exercise is that
this can be proved in a far more elementary fashion.)

4Consider, for instance, the free group F2 on two generators a, b, which is nonamenable. If the step distri-
bution of a random walk is µ(a) = µ(a−1) = 1

2
, then the random walk is just the simple random walk on the

subgroup {an}n∈Z ∼= Z.
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Exercise 4.8. Show that the (modified) lamplighter random walk in dimension 3 has posi-
tive speed, and therefore also positive entropy. This shows that it is possible for a symmet-
ric, nearest-neighbor random walk on an amenable group to have positive speed.

Sections 4.2–4.5 will be devoted to the proof of the second assertion of Kesten’s theorem,
that any irreducible, symmetric, nearest-neighbor random walk on a nonamenable group
Γ has spectral radius < 1. Section 4.6 will discuss a useful necessary condtion for a finitely
generated group to be amenable.

4.2 Standing Assumptions

Assume in sections 4.2–4.5 that Γ is a finitely generated, nonamenable group.

We begin with several easy reductions of Kesten’s theorem. Recall (cf. Proposition 3.9)
that the spectral radius % of a random walk coincides with the norm ‖M‖ of its Markov
operator. Thus, it will suffice to prove that for any irreducible, symmetric, nearest-neighbor
random walk on a nonamenable group Γ the Markov operator satisfies

‖M‖ < 1. (4.2)

If a symmetric random walk on a finitely generated group Γ is both irreducible and
nearest-neighbor, then the set of group elements h for which p(1, h) > 0 is a symmetric
generating set A. Without loss of generality, we will assume that this generating set A is
used to construct the Cayley graph GΓ. (Recall that nonamenability does not depend on
the choice of generating set.) Therefore, there is a positive constant ε such that for every
nearest neighbor y of the group identity,

p(1, y) = µ(y) ≥ ε. (4.3)

Lemma 4.9. For every symmetric, nearest-neighbor random walk whose step distribution satisfies
the condition (4.3), there is a positive constant κ such that for every finite set F ⊂ Γ,∑

x∈F

∑
y∈∂F

p(x, y) ≥ κ|F |. (4.4)

Proof. Take κ = ει(GΓ); then (4.4) follows directly from (4.3) and the definition of the
isoperimetric constant.

4.3 The Sobolev Inequality

Definition 4.10. For any function f : Γ→ R, define the Sobolev norm S(f) by

S(f) :=
1

2

∑
x∈Γ

∑
y∈Γ

|f(x)− f(y)|p(x, y).
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Proposition 4.11. For any symmetric, nearest-neighbor random walk on a nonamenable group Γ
for which condition (4.3) holds, there exists a constant κ > 0 such that for every function f ∈ L1(Γ),

S(f) ≥ κ‖f‖1. (4.5)

Proof. Without loss of generality, assume that f ≥ 0. For any t > 0, let Ft be the set of all
y ∈ Γ for which f(y) > t. Clearly, if f ∈ L1(Γ) then each Ft is a finite set. Consequently, by
Lemma 4.9,

S(f) =
∑

x,y : f(x)<f(y)

(f(y)− f(x))p(x, y)

=

∫ ∞
0

∑
x,y

1{f(x) < t < f(y)}p(y, x) dt

=

∫ ∞
0

∑
y∈Ft

∑
x∈∂Ft

p(y, x) dt

≥ κ
∫ ∞

0
|Ft| dt = κ‖f‖1.

4.4 Dirichlet Form

Recall that our objective is to prove inequality (4.2), which asserts that the norm of the
Markov operator M is strictly less than 1. Because the random walk is symmetric, so is M ,
and because the matrix entries p(x, y) of M are nonnegative, Mf ≥ 0 for any nonnegative
function f . This allows the following characterization of the norm ‖M‖.

Lemma 4.12. 1− ‖M‖ = inf‖f‖2=1〈f, (I −M)f〉.

Proof Sketch. By Lemma 3.7, ‖M‖ is the supremum of the sequence ‖Mk‖, where Mk =
PkMPk is the restriction of M to the ball Bk. Moreover, for any f ∈ L2(Γ), the function Mf
is the L2−limit of the sequence Mkf . Hence, it suffices to prove that for each k ≥ 1,

1− ‖Mk‖ = inf
‖f‖2=1

〈f, (I −Mk)f〉,

where the inf is now over all f with support in the ball Bk. By the Spectral Theorem for
finite-dimensional symmetric operators, ‖Mk‖ is the maximum magnitude of its eigen-
values. Furthermore, since Mk has nonnegative matrix entries, the max must occur at the
largest nonnegative eigenvalue λ∗, and the corresponding normalized eigenfunction f∗ must
be nonnegative. Therefore,

1− ‖Mk‖ = 1− λ∗ = 〈f∗, f∗〉 − 〈f∗,Mkf∗〉

Finally, since 〈f,Mkf〉 is maximized at f = f∗ among all f with norm 1, the inner product
〈f, (I −Mk)f〉 is minimized at f = f∗.
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Definition 4.13. The Dirichlet form on L2(Γ) is the quadratic form

D(f, f) =
1

2

∑
x∈Γ

∑
y∈Γ

(f(y)− f(x))2p(x, y). (4.6)

Proposition 4.14. For any f ∈ L2(Γ),

D(f, f) = 〈f, (I −M)f〉. (4.7)

Proof. Expand the square in the Dirichlet form and use the fact that
∑

y p(x, y) =
∑

y p(x, y) =
1 for all group elements x, y to obtain

D(f, f) =
1

2

∑
x∈Γ

∑
y∈Γ

(
f(x)2 + f(y)2 − 2f(x)f(y)

)
p(x, y)

=
∑
x

f(x)2 −
∑
x

∑
y

f(x)f(y)p(x, y)

= 〈f, f〉 − 〈f,Mf〉 = 〈f, (I −M)f〉.

4.5 Spectral Gap: Proof of Kesten’s Theorem

To show that ‖M‖ < 1 it suffices, by Lemma 4.12, to show that there exists ε > 0 such that
for every function f ∈ L2(Γ) with norm ‖f‖2 = 1,

〈f, (I −Mf)〉 ≥ ε.

Proposition 4.14 implies that this is equivalent to proving

D(f, f) ≥ ε provided ‖f‖2 = 1. (4.8)

To accomplish this, we will use the Cauchy-Schwartz inequality to bound the Dirichlet
form D(f, f) from below by a multiple of the Sobolev norm S(f2) of f2, and then use the
Sobolev inequality to bound the Sobolev norm by the L2−norm of f . Here’s how it works:
let f be any function with ‖f‖2 = 1; then with κ as in the Sobolev inequality,

κ‖f‖22 = κ‖f2‖1 ≤ S(f2)

=
1

2

∑
x

∑
y

|f(y)2 − f(x)2|p(x, y)

=
1

2

∑
x

∑
y

|f(y)− f(x)||f(y) + f(x)|p(x, y)

≤

(
1

2

∑
x

∑
y

(f(y)− f(x))2p(x, y)

)1/2(
1

2

∑
x

∑
y

(f(y) + f(x))2p(x, y)

)1/2

≤ D(f, f)1/2

(
1

2

∑
x

∑
y

4(f(y)2 + f(x)2)p(x, y)

)1/2

= 4D(f, f)1/2‖f‖22.
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Squaring both sides and using the assumption that ‖f‖2 = 1 now yields

D(f, f) ≥ κ/4,

which proves (4.8).

4.6 A Necessary Condition for Amenability

Definition 4.15. Let Γ be a finitely generated group. A Γ−action on a compact metric space
Y is a group homomorphism Φ : Γ→ Homeo(Y) from Γ to the group of homeomorphisms
of Y .

The homeomorphism Φ(g) assigned to a given group element g ∈ Γ is usually abbre-
viated as g, and for a given element y ∈ Y the image Φ(g)(y) is abbreviated gy. A group
action Φ on Y induces an action on the space of Borel probability measures on Y , as follows:
for a Borel probability measure ν, a group element g, and a continuous function f : Y → R,∫

y∈Y
f(y) (g ∗ ν)(dy) :=

∫
y∈Y

f(gy) ν(dy). (4.9)

Definition 4.16. Let Φ be a Γ−action on Y . A Borel probability measure ν on Y is said to
be Γ−invariant if for every g ∈ Γ,

g ∗ ν = ν. (4.10)

Proposition 4.17. An infinite, finitely generated group Γ is amenable if and only if for any
Γ−action on any compact metric space Y there is a Γ−invariant Borel probability measure.

This provides a useful tool for showing that a group is non-amenable: one only need
find a single Γ−action for which there is no Γ−invariant Borel probability measure.

Exercise 4.18. (For those of you who know the basics of Fuchsian groups.) Show that
every co-compact Fuchsian group is nonamenable. HINT: A Fuchsian group Γ acts on
the circle at infinity by linear fractional transformations. Show that this action has no
invariant probability measure. To do this, you will need the following fact: every co-
compact Fuchsian group has hyperbolic elements (linear fractional transformations with
two fixed point on the circle at infinity), and the set of fixed point pairs of these hyperbolic
elements is dense in the circle at infinity.

Proof of Proposition 4.17=⇒. We will prove only the forward implication, that amenability
implies the existence of invariant probability measures. Suppose that Γ is amenable, and
let Φ : Γ→ Homeo(Y) be a Γ−action on a compact metric space Y . Because Γ is amenable,
there exist finite sets Fn ⊂ Γ such that

lim
n→∞

|∂Fn|
|Fn|

= 0. (4.11)

Claim: Without loss of generality, the sets Fn can be chosen in such a way that A ⊂ F1 ⊂
F2 ⊂ F3 ⊂ · · · , where A is the generating set.
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Proof of the Claim. Let Fn be a sequence of finite sets satisfying (4.11); then |Fn| → ∞, and
so (by taking a subsequence if necessary) we may assume that |Fm| ≥ 22m |Fm−1|. Let

Gm = A ∪ F1 ∪ F2 ∪ · · · ∪ Fm.
The sets Gn are nested and contain contain the generating set A. Moreover, because the
cardinality of Fm dominates the cardinality of Gm−1, the sequence Gn satisfies (4.11).

Now let ν be any Borel probability measure on Y . For each n = 1, 2, · · · , define a Borel
probability measure νn by averaging the translates of ν by elements of the set Fn, that is,

νn =
1

|Fn|
∑
g∈Fn

g ∗ ν.

By the Banach-Alaoglu theorem, the sequence νn contains a weak−∗ convergent subse-
quence νm; and by the Riesz representation theorem, the limit ν∗ of this weak−∗ convergent
subsequence is a Borel probability measure on Y . Furthermore, since any group element
g ∈ Γ acts on Y as a homeomorphism, it is also the case that the sequence g ∗ νn converges
weak−∗ to g ∗ ν∗.

We claim that ν∗ is Γ−invariant. To see this, observe that for any continuous function
f : Y → R and any group generator a ∈ A,∣∣∣∣∫ f dνn −

∫
f d(a ∗ νn)

∣∣∣∣ ≤ 2‖f‖∞|∂Fn|
|Fn|

−→ 0;

consequently, since νn → ν∗ weakly,∫
f dν∗ =

∫
f d(a ∗ ν∗).

Since f is arbitrary, this proves that ν∗ = a ∗ ν∗ for every group generator a, and it follows
trivially that ν∗ = g ∗ ν∗ for every g ∈ Γ.

5 Harmonic Functions

Assume throughout this section that Xn = X0ξ1ξ2 · · · ξn is an irreducible, nearest-neighbor
random walk on a finitely generated group Γ with symmetric generating set A, with transi-
tion probabilities p(x, y). For any finite set U ⊂ Γ, denote by ∂U the (finite) set of all group
elements y 6∈ U such that y is a nearest neighbor of some x ∈ U , that is, such that x−1y is
an element of the generating set A.

5.1 Harmonic Functions and the Dirichlet Problem

Definition 5.1. 5 A function h : U ∪ ∂U → R is called harmonic at a point x ∈ U if

h(x) = Exh(X1) =
∑
y∈Γ

p(x, y)h(y), (5.1)

5In section 5, the Avez entropy will play no role, so there should be no ambiguity in the use of the letter h
to denote a harmonic function on a subset of Γ.
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and h is said to be harmonic in U if it is harmonic at every x ∈ U . A function h : Γ → R is
harmonic if it is harmonic at every x ∈ Γ, that is, if equation (5.1) is valid for every x.

For any function h : Γ → R that is harmonic on the entire group Γ, the defining
formula (5.1) can be iterated: thus, for any n ≥ 0,

h(x) = Exh(Xn) =
∑
y∈Γ

pn(x, y)h(y). (5.2)

A routine calculation shows that if h is harmonic then the sequence h(Xn) is a martingale,
that is, for every cylinder set

C(x0, x1, · · · , xn) = ∩ni=0{Xi = xi}, (5.3)

the martingale identity

Ex(h(Xn+1) |C(x0, x1, · · · , xn)) :=
Exh(Xn+1)1C(x0,x1,··· ,xn)

P x(C(x0, x1, · · · , xn))
= h(xn) (5.4)

holds. We will avoid the use of martingale theory in the following development. The reader
who is familiar with the basics of this theory will recognize that the Poisson formula (5.6)
below, on which we will base our exposition, is a direct consequence of Doob’s “Optional
Sampling Formula” for martingales.

Obviously, linear combinations of harmonic functions are harmonic, and every constant
function is harmonic. Since constant functions do not tell us anything about random walks,
our interest will be in non-constant harmonic functions.

Example 5.2. The function h : Z → R defined by h(x) = x is harmonic for the simple
random walk on Z. The function h(x) = ((1 − p)/p)x is harmonic for the asymmetric
random walk on Z with step distribution P{X1 = +1} = p = 1− P{X1 = −1}.

Exercise 5.3. Prove the Maximum Principle: If h : U ∪ ∂U → R is harmonic in a finite set U
then h does not have a local max or min in U . More precisely, there is no x ∈ U such that

h(x) > h(y) for all neighbors y of x.

Exercise 5.4. Prove the Uniqueness Theorem: Given a finite set U and a function f : ∂U → R
defined on its boundary, there is at most one harmonic function h in U such that

h(x) = f(x) for all x ∈ ∂U.

Definition 5.5. For any finite set U ⊂ Γ with boundary ∂U , define the first exit time from
the region U to be the random variable

τU := min{n ≥ 0 : Xn 6∈ U}. (5.5)

When there is no danger of ambiguity, we will sometimes abbreviate τU by τ .
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Proposition 5.6. Let U ⊂ Γ be a finite set with boundary ∂U , and let f : ∂U → R be a specified
function on the boundary. Then the function

h(x) = Exf(XτU ) (5.6)

is harmonic in U and satisfies h = f on the boundary ∂U .

Proof. If the starting point X0 = x of the random walk is an element of ∂U then the first
exit time must be τU = 0, which implies Exf(Xτ ) = Exf(x) = f(x). Thus, h = f on ∂U .

If the starting point X0 = x of the random walk is an element of U , then the first exit
time must satisfy τU ≥ 1. Thus, we can compute the expectation Exf(Xτ ) by “conditioning
on the first step”:

Exf(Xτ ) =
∑
y∼x

Exf(Xτ )1{X1 = y} =
∑
y∼x

p(x, y)Ex(f(Xτ ) |X1 = y).

On the event X1 = y, the first exit time must be τ = 1 + τ ′, where τ ′ is the time of first exit
from U for the random walk X ′n = yξ2ξ3 · · · ξn+1. Since the increments ξn of the random
walk are independent and identically distributed, the distribution of the exit site X ′τ ′ is the
same as that of the random walk Xn = yξ1ξ2 · · · ξn when started at y; consequently,

Ex(f(Xτ ) |X1 = y) = Eyf(Xτ ) = h(y).

This shows that h satisfies h(x) =
∑

y p(x, y)h(y), and therefore proves that h is harmonic
in U .

Exercise 5.7. Assume that the random walk is symmetric. Prove the Dirichlet Principle:
Among all functions u : U ∪ ∂U → R that satisfy the boundary condition u(x) = f(x) for
x ∈ ∂U , the harmonic function h(x) = Exf(Xτ ) is the one that uniquely minimizes the
Dirichlet form

DU (u, u) :=
1

2

∑∑
x,y

(u(y)− u(x))2p(x, y)

where the sum is over all nearest-neighbor pairs (x, y) such that at least one of the vertices
x, y is an element of U .

5.2 Convergence Along Random Walk Paths

Together with the Uniqueness Theorem, formula (5.6), the so-called Poisson formula, shows
that any harmonic function in a region U is uniquely determined by its values on the
boundary ∂U . Our next objective is to find an analogous principle for bounded harmonic
functions on the entire group Γ. Obviously, there is no “finite” analogue of the Poisson
formula, because there is no first exit time for Γ. However, the following theorem shows
that there is, nevertheless, a limiting analogue of the Poisson formula.

Assumption 5.8. Assume for the remainder of section 5.2 that h : Γ → [0,∞) is a nonnegative,
harmonic function on the entire group Γ.
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Theorem 5.9. For any initial point x ∈ Γ, with P x−probability 1, the limit Y := limn→∞ h(Xn)
exists and is finite. Furthermore, if the function h is bounded then

h(x) = ExY. (5.7)

The first assertion of the theorem is a direct consequence of the martingale convergence
theorem, which implies that every nonnegative martingale converges almost surely to a
finite limit. The second asertion of the theorem, that for bounded h the integral formula (5.7)
holds, then follows from the bounded convergence theorem, because harmonicity implies
that h(x) = Exf(Xn) for every n ≥ 0. Because the martingale convergence theorem relies
on some rather heavy machinery, we will devote the remainder of this section 5.2 to an
elementary proof6 of Theorem 5.9.

Proposition 5.10. (Maximal Inequality) For any α > 0 and any x ∈ Γ,

P x{sup
n≥0

h(Xn) ≥ α} ≤ h(x)/α. (5.8)

Proof. The inequality is trivial unless α > h(x), so let’s assume this is the case. Define
G = G(α) to be the set of all group elements y such that h(y) ≥ α, and let T be the first
time n that Xn ∈ G, or T =∞ if there is no such n. Our goal is to show that

P x{T <∞} ≤ h(x)/α. (5.9)

Let m ≥ 1 be large enough that the initial point x is contained in the ball Bm of radius
m centered at the group identity 1. Define Um = Bm \G to be the set of points y in the ball
Bm such that h(y) < α. By the Poisson formula (Proposition 5.6),

h(x) = Exh(Xτm)

where τm is the first exit time from the set Um. At the exit time τm, the random walk will
either have reached a point of G or it will have reached the boundary of the ball Bm, so
τm = T ∧ νm, where νm is the first exit time from Bm. If T = τm ≤ νm then h(Xτm) ≥ α; but
if τm = νm < T , then h(Xτm) will take some value between 0 and α. Consequently, by the
Poisson formula,

αP x{T = τm} = αP x{T ≤ νm} ≤ Exh(τm) = h(x).

As m → ∞, the random variables νm → ∞; this implies that the event {T < ∞} is
the increasing limit of the events {T ≤ νm}. Therefore, monotone convergence implies the
inequality (5.9).

The maximal inequality (5.8) clearly implies that with, P x−probability 1, the sequence
h(Xn) has finite supremum. Hence, the sequence h(Xn) will fail to converge to a finite
limit only if there is a nonempty interval (α, β) ⊂ (0,∞) with rational endpoints such that

lim inf
n→∞

h(Xn) ≤ α and

lim sup
n→∞

h(Xn) ≥ β.

6This is, of course, modeled on the standard approach to the martingale convergence theorem.
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This will occur only if the sequence makes infinitely many crossings from [0, α] to [β,∞).
The following result shows that this cannot happen with positive probability.

Proposition 5.11. (Upcrossings Inequality) Fix 0 ≤ α < β < ∞, and let N be the number of
upcrossings, that is, the number of times that the sequence h(Xn) crosses from below α to above β.
Then for every m = 0, 1, 2, · · · and every x ∈ Γ,

P x{N ≥ m} ≤
(
α

β

)m
. (5.10)

Proof. This is by induction on m. The inequality is trivial if m = 0, so it suffices to show
that if it is true for m then it is true for m+ 1.

Obviously, the event N ≥ m + 1 can only occur if N ≥ m and if the sequence h(Xn)
returns to the interval [0, α] following the completion of its mth upcrossing. Partition this
latter event into elementary cylinder events C(x0, x1, · · · , xn) in such a way that for each
such cylinder in the partition, the sequence h(Xj) will have completed m upcrossings and
returned to the interval [0, α] for the first time following these m upcrossings at time n. In
order that the sequence then makes at least one more upcrossing, it must be the case that
the “post-n” random walk

xn, xnξn+1, xnξn+1ξn+2, · · ·

will eventually reach a point y where h(y) ≥ β. Since the steps ξn+i of this random walk are
independent of the cylinder event C(x0, · · · , xn), and since h(xn) ≤ α, it now follows by
the maximal inequality that the (conditional) probability of this (given the cylinder event)
is no larger than α/β, i.e.,

P x(N ≥ m+ 1 |C(x0, x1, · · · , xn) ≤ α/β.

Using the multiplication rule for conditional probability and then summing over all the
cylinder events that make up {N ≥ m}, we obtain

P x{N ≥ m+ 1} ≤ (α/β)P x{N ≥ m}.

Proof of Theorem 5.9. As we have already remarked, the equality (5.7) will follow by the
bounded convergence theorem once we establish the almost sure convergence of the se-
quence h(Xn). The maximal inequality implies that supn≥0 h(Xn) is finite with probability
1, and the upcrossings inequality implies that for any two real numbers α < β, the number
of crossings of the interval (α, β) is almost surely finite. Because the set of rational pairs
α < β is countable, and because the union of countably many sets of probability 0 is a set
of probability 0, it follows that with probability 1 there is no rational pair α < β such that
the sequence h(Xn) makes infinitely many upcrossings of the interval (α, β). This implies
that with probability 1,

lim inf
n→∞

h(Xn) = lim sup
n→∞

h(Xn),

so the sequence h(Xn) must converge to a finite limit.
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5.3 Example: Random Walk on Z2 ∗ Z2 ∗ Z2

A transient random walk eventually leaves every finite subset of its state space Γ. Where
does it go? The convergence theorem 5.9 suggests that the answer (to the extent that a
satisfactory answer can be given) has something to do with harmonic functions. The goal
of this section is to study in detail an interesting, concrete example where the connection
between the long-time behavior of a transient random walk and the space of harmonic
functions is relatively transparent.

Recall that the group Γ = Z2 ∗ Z2 ∗ Z2 has as its Cayley graph the homogeneous tree
T3 of degree 3, which in this section we will abbreviate T. Elements of Γ are finite reduced
words in the letters a, b, c; these are represented by vertices of the tree. Define ∂T, the space
of ends of the tree, to be the set of all infinite reduced words

ω = α1α2 · · · .

Let d be the metric on T∪∂T defined by d(ω, ω′) = 2−n, where n ≥ 0 is the maximal integer
such that the words ω and ω′ (whether finite or infinite) agree in their first n coordinates.
The topology induced by this metric is the same as the induced Euclidean topology on the
tree by the embedding shown here:

In the following exercises, let Xn be the nearest-neighbor random walk on Γ with step
distribution P{ξi = j} = µ(j) > 0, where j ∈ {a, b, c}. Define the hitting probability function
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u by

u(x) = P 1{Xn = x for some n ≥ 0}
= P x{Xn = 1 for some n ≥ 0}

Exercise 5.12. Prove that
lim
n→∞

Xn = X∞ ∈ ∂T

exists with P x−probability one for any initial point x ∈ Γ. (Here the convergence is with
respect to the metric d.) The distribution (under P x) of the exit point X∞ is, sensibly
enough, called the exit distribution. Denote this by νx.

Exercise 5.13. Show that

(A) If x has word representation x = a1a2 · · · am then u(x) =
∏m
i=1 u(ai).

(B) Show that for each generator i = a, b, c,

u(i) = µ(i) +
∑
j 6=i

µ(j)u(j)u(i).

Exercise 5.14. For any finite reduced word w = a1a2 · · · am, define Σ(w) to be the subset of
∂T consisting of all infinite reduced words whose first m letters are a1a2 · · · am.

(A) Show that

P 1{X∞ ∈ Σ(w)} = ν1(Σ(w)) =
u(w)

1 + u(am)
.

(B) Conclude that ∑
i=a,b,c

u(i)

1 + u(i)
= 1.

(C) Let X∞ have reduced word representation X∞ = A1A2A3 · · · . Show that under
P 1 the sequence A1, A2, A3, · · · is a Markov chain on the set {a, b, c}. What are the
transition probabilities and intial distribution?

Exercise 5.15. Let xn be a sequence of group elements that converge (in the metric d) to a
point ω ∈ ∂T of the space of ends. Prove that the exit measures νxn converge weakly to the
unit point mass at ω, that is, show that for any open set U ⊂ ∂T containing ω,

lim
n→∞

νxn(U) = 1.

Exercise 5.16. Let f : ∂T→ R be any bounded, Borel measurable function. Define h : Γ→
R by

h(x) := Exf(X∞) =

∫
ω∈∂T

f(ω) dνx(ω).

(A) Show that h is harmonic on Γ.
(B) Show that if f is continuous then limn→∞ h(Xn) = f(X∞) almost surely (for any P x).
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Exercise 5.17. This exercise outlines a proof of the converse to Exercise 5.16. Let h : Γ→ R
be any bounded, harmonic function. For each n ≥ 1 define a function fn : Γ ∪ ∂T→ by

fn(a1a2 · · · am) = h(a1a2 · · · am) if m ≤ n;

fn(a1a2 · · · am) = h(a1a2 · · · an) if m > n;

fn(a1a2 · · · ) = h(a1a2 · · · an).

(A) Use Theorem 5.9 to show that for any x ∈ Γ,

νx{ω : lim
n→∞

fn(ω) := f(ω) exists} = 1.

(B) Let G be the set of all ω ∈ ∂T such that lim fn(ω) = f(ω) exists. For ω ∈ Γ \G, define
f(ω) = 0. Prove that for every x ∈ Γ,

h(x) = Exf(X∞) =

∫
ω∈∂T

f(ω) dνx(ω).

Exercise 5.18. For any ω = a1a2a3 · · · ∈ ∂T let wn = a1a2 · · · an be the sequence of group
elements along the geodesic ray from 1 to ω. For any x = b1b2 · · · bm ∈ Γ, let n(x, ω) ≤ m be
the maximal nonnegative integer such that the words a1a2 · · · and b1b2 · · · bm agree in the
first n coordinates.

(A) Show that the sequence u(x−1wn)/u(wn) stabilizes for n ≥ n(x, ω).
(B) Show that for any finite word w that has wn(x,ω) as a prefix (i.e., the group element w

lies on the geodesic ray from wn(x,ω) to ω),

νx(Σ(w))

ν1(Σ(w))
=
u(x−1wn(x,ω))

u(wn(x,ω))
.

(C) Conclude from (B) that the measures νx and ν1 are mutually absolutely continuous,
and that the Radon-Nikodym derivative (likelihood ratio) dνx/dν1 is given by

dνx
dν1

(ω) =
u(x−1xn(x,ω)))

u(xn(x,ω)))
= lim

n→∞

u(x−1wn)

u(wn)
:= K(x, ω).

NOTE: The Radon-Nikodym derivative is by definition the unique Borel measurable
function on ∂T such that for every Borel set F ⊂ ∂T,

νx(F ) =

∫
ω∈F

dνx
dν1

(ω) dν1(ω)

(D) Show that for each ω ∈ ∂T the function x 7→ K(x, ω) is harmonic.
(E) Show that for each x ∈ Γ the function ω 7→ K(x, ω) is (Hölder) continuous on ∂T.

The function K(x, ω) defined in Exercise 5.18 is called the Martin kernel of the random
walk. It extends to a Hölder continuous function K : T× (T ∪ ∂T)→ (0,∞) by setting

K(x, y) =
u(x−1y)

u(y)
=
P x{Xn = y for some n}
P 1{Xn = y for some n}

.
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Since linear combinations (even infinite ones) of harmonic functions are harmonic, it fol-
lows from (E) that for any finite probability measure λ on ∂T, the integral

h(x) :=

∫
ω∈∂T

K(x, ω) dλ(ω) (5.11)

is wel-defined and finite, and from (D) that h is harmonic, with value h(1) = 1 at the
identity. This is called the Martin representation of the harmonic function. It can be shown
(cf., for example, E. B. DYNKIN, Boundary Theory of Markov Processes (The Discrete
Case)) that every nonnegative harmonic function has a Martin representation, and that the
representation is unique.

5.4 Harmonic Functions and the Invariant σ−Algebra

Let’s return to the study of arbitrary nearest-neighbor random walks Xn = X0ξ1ξ2 · · · ξn on
arbitrary finitely generated groups Γ. We have shown that for any nonnegative harmonic
function h the sequence h(Xn) converges almost surely to a finite limit Y . Clearly, this limit
random variable Y is a function of the sequence Xn, but it doesn’t depend on the entire
sequence: in fact, for any m ≥ 1 the value of Y is determined by the truncated sequence
Xm+1Xm+2, · · · . The essential information needed to determine limits of functions along
the sequence is contained in the invariant σ−algebra.

Recall that a σ−algebra on a set Y is a collection of subsets that contains the empty set
∅ and is closed under complements and countable unions. If Y is a topological space, the
Borel σ−algebra B = BY is the smallest σ−algebra containing all the open sets. If Y = Γ∞ is
the set of all sequences with entries in Γ, the Borel σ−algebra B∞ is the smallest σ−algebra
containing all sets of the form {Yn = y}, where Yn : Y → Γ is the nth coordinate projection,
n is any nonnegative integer, and y is any element of Γ.

Definition 5.19. The invariant σ−algebra I on Γ∞ is the set of all Borel sets F ∈ B∞ whose
indicators are invariant under the shift, that is,

(y0, y1, y2, · · · ) ∈ F ⇐⇒ (y1, y2, y3, · · · ) ∈ F. (5.12)

By definition (see the Technical Note in section 1.2), the random variables Xn that con-
stitute a random walk are measurable mappings Xn : Ω→ Γ defined on some measurable
space (Ω,F). These fit together to give a measurable mapping X : Ω→ Γ∞ by

X = (X0, X1, X2, · · · ).

Let P x denote the probability measure on (Ω,F) under which the sequence X is a random
walk with initial point X0 = x and step distribution µ. The mapping X : Ω→ Γ∞ naturally
induces a Borel probability measure on (Γ∞,B∞), called the distribution of the sequence X
under P x, by

νx(F ) = P x{X ∈ F}. (5.13)

The restriction of νx to the invariant σ−algebra I is called the exit measure of the random
walk. The triple (Γ∞, I, ν1) is called the Poisson boundary of the random walk.
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Proposition 5.20. The exit measures are mutually absolutely continuous, i.e., for any x, y ∈ Γ and
any F ∈ I,

νx(F ) = 0 ⇐⇒ νy(F ) = 0.

Proof. This is an easy consequence of the irreducibility of the random walk. Suppose that
νx(F ) = 0. Let y be any nearest-neighbor of x such that P x{X1 = y} > 0; then

νx(F ) = P x{(X0, X1, X2, · · · ) ∈ F}
= P x{(X1, X2, X3, · · · ) ∈ F}
≥ P x{X1 = y and (X1, X2, X3, · · · ) ∈ F}
= P x{X1 = y}νy(F ),

and so νy(F ) = 0. Irreducibility now implies that νz(F ) = 0 for every z ∈ Γ.

Clearly, if h : Γ → R is Borel measurable, then the random variable lim suph(Xn)
is measurable with respect to the σ−algebra X−1(I), because the value of the limsup
is the same for any sequence and its right-shift. Therefore, the random variables Y in
Theorem 5.9 are (shift-)invariant, that is, they are measurable with respect to X−1(I). The
following proposition shows that, conversely, every bounded, invariant random variable
Y corresponds to a bounded harmonic function on Γ.

Proposition 5.21. For any bounded random variable Y that is measurable with respect to the
invariant σ−algebra X−1(I), the function h : Γ → R defined by h(x) = ExY is harmonic, and
for every x ∈ Γ, with P x−probability 1,

Y = lim
n→∞

h(Xn). (5.14)

Proof that h is harmonic. This is relatively straightforward; the main idea, as in the proof of
Proposition 5.6, is to condition on the first step of the random walk. In carrying out the
calculation, we will rely on the fact that if the random variable Y is measurable relative to
the σ−algebra X−1(I) then there exists a function g : Γ∞ → R such that for any n ≥ 1,

Y = g(X0, X1, X2, · · · ) = g(Xn, Xn+1, Xn+2, · · · ).
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Consequently,

ExY =
∑
y∈Γ

p(x, y)Ex(Y |X1 = y)

=
∑
y∈Γ

p(x, y)Ex(g(X1, X2, X3, · · · ) |X1 = y)

=
∑
y∈Γ

p(x, y)Ex(g(y, yξ2, yξ2ξ3, · · · ) |X1 = y)

=
∑
y∈Γ

p(x, y)Ey(g(y, yξ2, yξ2ξ3, · · · )

=
∑
y∈Γ

p(x, y)Ey(g(X0, X1, X2, · · · )

=
∑
y∈Γ

p(x, y)h(y).

(Note: In the second to last equality, we have used the fact that the random variables
ξ1, ξ2, ξ3, · · · have the same joint distribution under P y as under P x.)

The proof of (5.14) will require the following elementary fact from integration theory.

Lemma 5.22. LetZ = f(X0, X1, X2, · · · ) be a bounded, Borel-measurable function. IfEx(Z1C) =
0 for every cylinder event C = C(x0, x1, · · · , xm), then P x{Z = 0} = 1.

Proof of the limit relation (5.14). Because h(x) = ExY is a bounded harmonic function, The-
orem 5.9 implies that Z := limn→∞ h(Xn) exists P x− almost surely, for every x ∈ Γ, and
h(x) = ExZ = ExY . Consequently, to prove (5.14) it suffices to show that for any bounded,
shift-invariant random variable Y = f(X0, X1, X2, · · · ),

ExY = 0 ∀ x ∈ Γ =⇒ (5.15)
P x{Y = 0} = 1 ∀ x ∈ Γ.

Let C = C(x0, x1, · · · , xm) be the cylinder event that Xi = xi for every i = 0, 1, · · · ,m.
Since f is a shift-invariant function,

Ex(Y 1C) = Exf(Xm, Xm+1, · · · )1C
= Exf(xm, xmξm+1, xmξm+1ξm+2, · · · )1C
= Exf(xm, xmξm+1, xmξm+1ξm+2, · · · )Ex1C ,

the last equality because the steps ξm+1, ξm+2, · · · are independent (under P x) of the ran-
dom variables X1, X2, · · · , Xm that determine 1C . Now since the joint distribution of the
sequence ξm+1, ξm+2, · · · is the same as that of ξ1, ξ2, · · · ,

Exf(xm, xmξm+1, xmξm+1ξm+2, · · · ) = Exf(xm, xmξ1, xmξ1ξ2, · · · ) = ExmY = 0.

This proves that Y integrates to 0 on every cylinder event, and so the lemma implies that
Y = 0 almost surely (P x).
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5.5 The Tail σ−Algebra

For certain purposes (see section 6.3 below), the invariant σ−algebra is a rather inconve-
nient object to work with. For this reason, we introduce the following larger σ−algebra.

Definition 5.23. The tail σ−algebra T on Γ∞ is the set of all Borel sets F ∈ B∞ whose
indicator functions 1F : Γ∞ → {0, 1} do not depend on the first m coordinate projections,
for any m, that is, for any two sequences y = (y0, y1, · · · ) and y′ = (y′0, y

′
1, · · · ) that agree in

all but finitely many entries,
y ∈ F ⇐⇒ y′ ∈ F. (5.16)

Exercise 5.24. Show that the invariant σ−algebra I is contained in the tail σ−algebra T .

In fact, the tail σ−algebra is, in general, much larger than the invariant σ−algebra. 7

Nevertheless, for aperiodic random walks the difference between the tail and invariant
σ−algebras is not important. The following proposition explains why.

Proposition 5.25. For any aperiodic random walk, the tail σ−algebra and the invariant σ−algebra
are P x−equivalent, for any x ∈ Γ. In particular, for any bounded, T −measurable function f there
exists a bounded, I−measurable function g such that for every x ∈ Γ,

νx{f = g} = 1. (5.17)

This we will deduce from the following shift-coupling construction.

Lemma 5.26. If the step distribution is aperiodic, then on some probability space there exist two
versions Xn and X ′′n of the random walk, both with initial point X0 = X ′′0 = x, such that with
probability 1,

X ′′n = Xn+1 eventually. (5.18)

Similarly, for any m = 0, 1, 2, · · · , there exist versions Xn and X ′′n of the random walk, both with
initial point X0 = X ′′0 = x, such that with probability 1,

X ′′n = Xn for all n ≤ m, and (5.19)
X ′′n = Xn+1 eventually.

Proof. We will only prove this for the special case where the random walk is lazy (cf. sec-
tion 1.2); the reader is invited to show how to extend the construction to cover the general
case. Recall that a lazy random walk is one whose step distribution is of the form (δ1 +µ)/2;
thus, at each time n = 1, 2, · · · it either stays put or makes a step with distribution µ, de-
pending on the result of an independent fair coin toss.

Assume that the underlying probability space supports independent sequences {ξn}n≥1,
{Un}n≥1, and {Vn}n≥1 of i.i.d. random variables, with ξn ∼ µ and Un, Vn both i.i.d.

7Consider, for example, the case Γ = Z; the event F consisting of all sequences (x0, x1, x2, · · · ) such that
x2n is even and x2n+1 is odd for all large n. This event is a tail event, because membership does not depend
on any finite set of coordinates, but it is not shift-invariant.
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Bernoulli-(1/2). (The standard Lebesgue space ([0, 1],B[0,1],Leb) can always be used – cf.
section 7.1 in the Appendix.) Set

SUn =
n∑
i=1

Ui and SVn =
n∑
i=1

Vi;

then the sequences

Xn = xξ1ξ2 · · · ξSU
n

and

X ′n = xξ1ξ2 · · · ξSV
n

are both random walks with step distribution (δ1 + µ)/2. Now the sequence SUn − SVn is an
aperiodic, symmetric, nearest-neighbor random walk on Z, so by the recurrence theorem
for 1D random walks (section 2.4) it visits every integer, with probability 1. Let T be the
first time that SVn = SUn + 1, and define

X ′′n = X ′n for all n ≤ T,
= Xn+1 for all n > T

This is a version of the random walk with the desired property (5.18).

This construction can be easily modified so that (5.19) also holds. The idea is rather
obvious: just toss the same coin for both versions of the random walk until time m, that is,
replace the definition of SVn above by

SVn = SUn∧m +
n∧m∑
i=m+1

Vi.

Proof of Proposition 5.25. Let Y = f(X0, X1, X2, · · · ) be a bounded, tail-measurable random
variable (that is, f : Γ∞ → R is measurable with respect to the tail σ−algebra T ), and let
σ : Γ→ Γ be the shift mapping

σ(x0, x1, x2, · · · ) = (x1, x2, x3, · · · ).

Our aim is to show that for every x ∈ Γ,

f(X0, X1, X2, · · · ) = f(X1, X2, X3, · · · ) = (f ◦ σ)(X0, X1, X2, · · · ) P x − almost surely.

To accomplish this we will show that the difference g := f − f ◦ σ integrates to 0 on every
cylinder set, and call once again on Lemma 5.22.

Fix an arbitrary initial state x, and let Xn, X
′′
n be shift-coupled versions of the random

walk, as in Lemma 5.26, satisfying (5.18) and (5.19), for some fixed integer m ≥ 1. Because
f is T −measurable, it does not depend on any finite set of coordinates; therefore, since
Xn+1 = X ′′n eventually with P x−probability 1,

f(X ′′0 , X
′′
1 , X

′′
2 , · · · ) = f(X1, X2, X3, · · · ) P x−almost surely.
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Furthermore, since the trajectories ofX ′′n andXn coincide until time n = m, for any cylinder
set

C =

m⋂
i=0

{Xi = xi} =

m⋂
i=0

{X ′′i = xi}

involving only the first m+ 1 coordinates,

f(X ′′0 , X
′′
1 , X

′′
2 , · · · )1C = f(X1, X2, X3, · · · )1C P x−almost surely.

Thus, for any x ∈ Γ,

ExY 1C = Exf(X0, X1, X2, · · · )1C
= Exf(X ′′0 , X

′′
1 , X

′′
2 , · · · )1C

= Exf(X1, X2, X3, · · · )1C
= Ex(f ◦ σ)(X0, X1, X2, · · · )1C .

Since this holds for every cylinder set C, it follows from Lemma 5.22 that f −f ◦σ = 0 with
νx−probability 1, for every initial point x.

6 Entropy and the Liouville Property

The Avez entropy h of a random walk Xn with step distribution µ was defined in section 2.2
as the limit of the sequence −E logµ∗n(Xn)/n. In section 3 we proved, using the Carne-
Varopoulos inequality, that positive entropy is equivalent to positive speed, and in section 4
we showed that irreducible random walks on nonamenable groups always have positive
entropy. In this section, we show that positivity of entropy is also the determining factor
for the existence of bounded harmonic functions.

Definition 6.1. A random walk has the Liouville property if every bounded harmonic func-
tion is constant.

Theorem 6.2. (Avez; Derrienic; Rosenblatt; Kaimanovich & Vershik) A random walk has the
Liouville property if and only if it has Avez entropy h = 0.

The proof of the implication h = 0 =⇒ Liouville property will be given in sections
6.1, 6.2, and 6.3; it uses only elementary properties of entropy. The converse implication
requires in addition a non-trivial result from martingale theory, the reverse martingale con-
vergence theorem; the argument is sketched in section 6.4.2.

Together with results we have already proved in sections 2, 3, and 4, Theorem 6.2 leads
to a number of interesting conclusions.

Corollary 6.3. A nearest-neighbor random walk on a group of sub-exponential growth (i.e., a group
for which β = 0, where β is defined by equation (2.3)) has no non-constant bounded harmonic
functions.
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Special cases of this were proved much earlier. The special case where Γ = Zd was first
established by Choquet & Deny. Doob, Snell, and Williamson subsequently showed that
the Choquet-Deny theorem extends to random walk in any abelian group.

Corollary 6.4. An irreducible, symmetric, nearest-neighbor random walk on a nonamenable group
always has non-constant bounded harmonic functions.

This follows directly from Kesten’s theorem, which implies that any irreducible, sym-
metric random walk on a nonamenable group has positive entropy.

Exercise 6.5. Prove that the modified lamplighter random walk in dimensions d ≥ 3 has
non-constant bounded harmonic functions, and conclude that it has positive speed and
entropy. HINT: The projection to Zd is a (lazy) simple random walk; since this is transient,
the lamplighter random walk must leave a “trail” of permanently reset lamps.

6.1 Entropy and Conditional Entropy

Definition 6.6. Let (Ω,B, ν) be a probability space and letF = {Fi}1≤i≤I and G = {Gj}1≤j≤J
be two finite measurable partitions of Ω (that is, partitions of Ω into measurable sets, which
here are defined to be sets [events] in the sigma algebra B) Define the entropy (or Shannon
entropy) H(F) of the partition F and the conditional entropy of F given G by

H(F) : = −
I∑
i=1

ν(Fi) log ν(Fi) and (6.1)

H(F | G) := −
I∑
i=1

J∑
j=1

ν(Fi ∩Gj) log ν(Fi |Gj). (6.2)

Note: Here we use the convention that 0 log 0 = 0. In the definition of conditional entropy,
ν(F |G) = ν(F ∩G)/ν(G) is the usual naive conditional probability of F given G; if ν(G) =
0 then our convention implies that

ν(F ∩G) log ν(F |G) = ν(F ∩G) log ν(F ∩G)− ν(F ∩G) log ν(G) = 0.

Substituting the expression ν(F |G) = ν(F ∩ G)/ν(G) for the conditional probability in
(6.2) gives an equivalent definition:

H(F | G) = H(F ∨ G)−H(G), (6.3)

where F ∨ G is the join of the partitions F and G, that is, the partition consisting of the
non-empty sets in the list {Fi ∩ Gj}i≤I,j≤J . The alternative definition (6.3) is the natural
analogue for entropy of the multiplication law P (A |B)P (B) = P (A ∩ B) for conditional
probability.

A partition H is a refinement of G, written G � H, if every element of G is a union of
elements ofH, i.e., if the elements ofH are obtained by partitioning the elements of G.
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Proposition 6.7. H(F | G) = 0 if and only if G is a refinement of F (up to changes by sets of
probability zero).

Proof. Since − log x ≥ 0 for every x ∈ (0, 1], with equality only at x = 1, the definition (6.2)
implies that H(F | G) > 0 unless ν(Fi |Gj) = 1 for every pair i, j such that ν(Fi ∩Gj) > 0.
This implies that every Gj is (up to a change by a set of measure 0) contained in one of the
sets Fi of the partition F .

Proposition 6.8. Let F ,G,H be measurable partitions such thatH is a refinement of G. Then

H(F) ≥ H(F | G) ≥ H(F |H). (6.4)

Furthermore, the addition law

H(F) = H(F | G) ⇐⇒ H(F ∨ G) = H(F) +H(G) (6.5)

holds if and only if the partitions F and G are independent.

Proof. Both inequalities are consequences of Jensen’s inequality and the fact that the func-
tion x 7→ −x log x is strictly concave on the unit interval. In particular, Jensen implies that
for each element Fi ∈ F ,

−
∑
j

ν(Fi ∩Gj) log ν(Fi |Gj) = −
∑
j

ν(Gj)ν(Fi |Gj) log ν(Fi |Gj)

≤ −

∑
j

ν(Gj)ν(Fi |Gj)

 log

∑
j

ν(Gj)ν(Fi |Gj)


= −ν(Fi) log ν(Fi).

Summing over j gives the inequality H(F) ≥ H(F | G). The second inequality is similar.

Next, recall that Jensen’s inequality Eϕ(X) ≤ ϕ(EX) for a strictly concave function ϕ
is strict unless the random variable X is constant. In the application above, the random
variable is the function j 7→ ν(Fi |Gj), with each j given probability ν(Gj). Thus, strict
inequality holds unless for each i the conditional probabilities ν(Fi |Gj), where j ranges
over the partition G, are all the same. But this will be the case only when ν(Fi |Gj) = ν(Fi)
for every pair i, j, that is, if the partitions are independent.

Proposition 6.9. (Continuity Lemma) Let Gn = {Gnj }1≤j≤J be a sequence of measurable partitions
that converge to a measurable partition G = {Gj}1≤j≤J in L1−norm, that is,

lim
n→∞

J∑
j=1

ν(Gnj ∆Gj) = 0.

Then for any measurable partition F ,

lim
n→∞

H(F | Gn) = H(F | G).

Proof. This is an easy consequence of the continuity of the function x 7→ x log x.
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6.2 Avez Entropy

Now let’s return to the world of random walks. Assume that under the probability measure
P x the sequence Xn = xξ1ξ2 · · · ξn is an irreducible, nearest-neighbor random walk on a
finitely generated group Γ with step distribution µ and initial state x Assume that µ gives
positive probability to each element of the generating set A.

Assumption 6.10. In this section, all entropies and conditional entropies are computed under P x,
for some arbitrary but fixed initial state x ∈ Γ. For notational ease, we will suppress the dependence
on x will be suppressed; thus, we will writeH(F) andH(F | G) rather thanHx(F) andHx(F | G).

Notational Convention: For any discrete random variable Y taking values in a finite set
{yi}i≤I , let π(Y ) be the measurable partition {{Y = yi}}i≤I . For any finite collection of
discrete random variables Y1, Y2, · · · , Yn, all taking values in finite sets, let

π(Y1, Y2, · · · , Yn) =
n∨
i=1

π(Yi)

be the measurable partition obtained by taking the join of the partitions π(Yj).

Lemma 6.11. For any integers n,m ≥ 1,

H(π(X1) |
n+m∨
i=n

π(Xi))) = H(π(X1) |π(Xn)). (6.6)

Proof. The key is that the partition π(Xn, Xn+1, · · · , Xn+m) is identical to the partition
π(Xn) ∨ π(ξn+1, ξn+2, · · · , ξn+m); this is useful because the partitions

π(X1, Xn) and π(ξn+1, ξn+2, · · · , ξn+m)

are independent. Thus, by the “addition law” (6.5) for independent partitions,

H(π(X1) |
n+m∨
i=n

π(Xi)) = H(π(X1) ∨
n+m∨
i=n

π(Xi))−H(
n+m∨
i=n

π(Xi))

= H(π(X1) ∨ π(Xn, ξn+1, · · · , ξn+m))−H(π(Xn, ξn+1, · · · , ξn+m)

= (H(π(X1) ∨ π(Xn)) +H(π(ξn+1, ξn+2, · · · , ξn+m)))

− (H(π(Xn)) +H(π(ξn+1, ξn+2, · · · , ξn+m)))

= H(π(X1) ∨ π(Xn))−H(π(Xn)

= H(π(X1) |π(Xn)).

The same calculation shows that for any 1 ≤ k ≤ n and any m ≥ 1,

H(

k∨
i=1

π(Xi) |
n+m∨
i=n

π(Xi))) = H(

k∨
i=1

π(Xi) |π(Xn)). (6.7)
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Corollary 6.12. H(
∨k
i=1 π(Xi) |π(Xn)) ≤ H(

∨k
i=1 π(Xi) |π(Xn+1)).

Proof. This is a direect consequence of equation (6.7) and the refinement inequality (6.4).

Corollary 6.13. For any integer k ≥ 1, the Avez entropy satisfies

kh = H(

k∨
i=1

π(Xi))− lim
n→∞

H(

k∨
i=1

π(Xi) |π(Xn)). (6.8)

Proof. For ease of exposition, consider the case k = 1. The previous corollary implies that
the sequence H(π(X1) |π(Xn)) is non-decreasing, so the limit in (6.8) exists. Now rewrite
the conditional entropy using equation (6.3):

H(π(X1) |π(Xn)) = H(π(X1) ∨ π(Xn))−H(π(Xn)).

Clearly, the partition π(X1)∨π(Xn) coincides with π(X1∨π(ξ2ξ3 · · · ξn)), so by the addition
law for independent partitions,

H(π(X1) ∨ π(Xn)) = H(π(X1)) +H(π(ξ2ξ3 · · · ξn))

= H(π(X1)) +H(π(Xn−1)),

the latter equality because the distribution of the product ξ2ξ3 · · · ξn is the same as that of
ξ1ξ2 · · · ξn−1. Consequently,

H(π(X1) |π(Xn)) = H(π(X1)) +H(π(Xn−1))−H(π(Xn)),

which in view of Corollary 6.12 implies that the sequence H(π(Xn))−H(π(Xn−1)) is non-
increasing in n. But for any non-increasing sequence an of real numbers,

inf
n≥1

an = lim
n→∞

1

n

n∑
m=1

an;

since

lim
n→∞

1

n

n∑
m=1

(H(π(Xm))−H(π(Xm−1))) = lim
n→∞

1

n
H(π(Xn)) = h,

the first relation follows. The proof of the general case k ≥ 1 is similar.

6.3 Entropy Zero Implies Trivial Tail

Corollary 6.13 shows that the Avez entropy of a random walk measures the dependence
between its long-time behavior and its first few steps. When the entropy is 0, long-time
behavior is independent of the initial behavior, as we will see, and this leads to the following
conclusion.
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Proposition 6.14. If an irreducible, nearest-neighbor random walk on Γ has Avez entropy h = 0
then its tail field is trivial, that is, for every tail event F ∈ T , either

νx(F ) = P x{(X0, X1, X2, · · · ) ∈ F} = 0 for all x ∈ Γ, or
νx(F ) = P x{(X0, X1, X2, · · · ) ∈ F} = 1 for all x ∈ Γ.

Corollary 6.15. If h = 0 then the only harmonic functions are constant.

Proof. Since the invariant σ−algebra I is contained in the tail σ−algebra T , Proposition 6.14
implies that every invariant random variable is constant; in particular, for every invariant
random variable Y there is a constant C such that P x{Y = C} = 1 for all x ∈ Γ. But
Theorem 5.9 implies that every bounded harmonic function f has a representation f(x) =
ExY for some bounded, invariant random variable Y ; consequently, f must be constant.

The remainder of section 6.3 will be devoted to the proof of Proposition 6.14. The key
step is the following lemma, which shows that entropy h = 0 forces independence of the
tail σ−algebra.

Lemma 6.16. If h = 0 then for any k ≥ 1 the partition
∨k
i=1 π(Xi) is independent of the tail field

X−1(T ) under each probability measure P x.

Proof. Let F be an event in the σ−algebra X−1(T ); we must show that the partitions

G = {F, F c} and
k∨
i=1

π(Xi)

are independent under P x. By Proposition 6.8, it will suffice to show that

H(

k∨
i=1

π(Xi)) = H(

k∨
i=1

π(Xi) | G). (6.9)

For any n ≥ 1, the tail σ−algebra X−1(T ) is contained in the σ−algebra generated by
the coordinate random variables Xn, Xn+1, Xn+2, · · · . Consequently, any event in X−1(T )
can be arbitrarily well-approximated by events in the union over m ≥ 1 of the σ−algebras
σ(
∨n+m
i=n π(Xi)); thus, in particular, for each n there exists m(n) ≥ 1 and an event Fn ∈

σ(
∨n+m(n)
i=n π(Xi)) such that P x(F∆Fn) ≤ 2−n. Let Gn = {Fn, F cn}; by construction, the

partitions Gn converge to the partition G in L1−norm, so by the Continuity Lemma (Propo-
sition 6.9),

H(
k∨
i=1

π(Xi) | G) = lim
n→∞

H(

k∨
i=1

π(Xi) | Gn).
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Now for each n ≥ 1 the partition
∨n+m(n)
i=n π(Xi) is a refinement of Gn, since the set Fn

is a union of sets in the partition
∨n+m(n)
i=n π(Xi), so the Monontonicity Principle (Proposi-

tion 6.8) implies that

H(
k∨
i=1

π(Xi)) ≥ H(
k∨
i=1

π(Xi) | Gn)

≥ H(

k∨
i=1

π(Xi) |
n+m(n)∨
i=n

π(Xi))

= H(
k∨
i=1

π(Xi) |π(Xn)),

the last by Lemma 6.11. But Corollary 6.13 implies that if h = 0 then

H(

k∨
i=1

π(Xi)) = lim
n→∞

H(

k∨
i=1

π(Xi) |π(Xn));

hence,

H(

k∨
i=1

π(Xi)) = lim
n→∞

H(

k∨
i=1

π(Xi) | Gn).

This proves (6.9).

Proof of Proposition 6.14. By Lemma 6.16, if h = 0 then, under any P x, the tail σ−algebra
X−1(T ) is independent of the partition

∨k
i=1 π(Xi), that is, every event F ∈ X−1(T ) is

independent of every event G ∈
∨k
i=1 π(Xi). These partitions generate the σ−algebra

F∞ := σ(X1, X2, X3. · · · );

therefore, the σ−algebras X−1(T ) and F∞ are independent. But X−1T is contained in F∞;
thus, it follows that the tail σ−algebra is independent of itself, that is, for any two events
F,G ∈ X−1(T ),

P x(F ∩G) = P x(F )P x(G).

This holds, in particular, for F = G, and so for every event F ∈ X−1(T ) we must have
P x(F )2 = P x(F ), which implies that P x(F ) is either 0 or 1. Finally, the mutual absolute
continuity of the exit measures νx (Proposition 5.20) guarantees that the value of P x(F )
must be the same for all tail events F .

6.4 Trivial Tail Implies Entropy Zero

Half of Theorem 6.2 is now proved. In this section, we tackle the other half: we will prove
that if a random walk has positive Avez entropy, then it has non-constant bounded harmonic
functions.
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Several simplifications can be made at the outset. First, to prove that a random walk
has non-constant bounded harmonic functions, it suffices, by Proposition 5.21, to show that
there exists an invariant event F ∈ X−1(I) whose P x−probability is neither 0 nor 1, for
some x ∈ Γ. For if such an event exists, then the function f(x) := Ex1F is bounded and
harmonic, and by Proposition 5.21

lim
n→∞

f(Xn) = 1F

almost surely, so f cannot be constant. Second, we can, without loss of generality, assume
that the random walk is lazy, because (i) the lazy version of a random walk has the same
harmonic functions as the original, and (ii) if a random walk has positive Avez entropy,
then so does its lazy version (cf. Exercise 2.10). Third, since for a lazy random walk the tail
σ−algebra and the invariant σ−algebra are equivalent (cf. Proposition 5.25), it will suffice
to show that the tail σ−algebra is non-trivial, that is, that there is a tail event F ∈ X−1(T )
whose P x−probability is neither 0 nor 1, for some x.

6.4.1 Conditional Distributions and their Radon-Nikodym Derivatives

For each n = 0, 1, 2, · · · denote by Gn the σ−algebra generated by the random variables
Xn, Xn+1, · · · . These σ−algebras are nested:

G0 ⊃ G1 ⊃ G2 ⊃ · · · ,

and their intersection is the tail σ−algebra X−1(T ). For each initial point x ∈ Γ and each
n ≥ 1, the probability measure P x on G0 restricts to a probability measure on Gn, which
we shall also denote by P x. Similarly, for each x ∈ Γ such that P 1{X1 = x} = µ(x) > 0,
the conditional law of the the random walk given the event X1 = x induces a probability
measure on Gn, which we denote by Qx. Formally, for every event G ∈ Gn, define

Qx(G) = P x(G |X1 = x) =
P x(G ∩ {X1 = x})

P x{X1 = x}
.

By definition, the measure Qx is absolutely continuous with respect to P x on every G\, and
hence also on X−1(T ). Denote the Radon-Nikodym derivatives by

Lxn :=

(
dQx

dP 1

)
Gn

and Lx∞ :=

(
dQx

dP 1

)
X−1(T )

.

Lemma 6.17. The Radon-Nikodym derivative Lxn is a function only of Xn, in particular,

Lxn =
∑
y∈Γ

P x(Xn = y |X1 = x)

P 1(Xn = y)
1{Xn=y}

Proof. Exercise.

Lemma 6.18. As n→∞,

Lxn −→ Lx∞ P 1−almost surely and in L1.
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Lemma 6.18 a consequence of the Reverse Martingale Convergence Theorem. See my Lec-
ture Notes on Discrete-Time Martingales for a complete discussion of this important theo-
rem.

6.4.2 Non-Trivial Tail Events

Proposition 6.19. If the Avez entropy of the random walk is positive, then for at least one x ∈ Γ
in the support of the step distribution µ and some ε > 0, the event {Lx∞ ≥ 1 + ε} is a non-trivial
tail event, that is,

0 < P 1{Lx∞ ≥ 1 + ε} < 1. (6.10)

Proof. That {Lx∞ ≥ 1 + ε} is a tail event is an immediate consequence of the definition of
Lx∞ as a Radon-Nikodym derivative. The upper inequality in (6.10) follows easily from the
fact that Qx is a probability measure:

(1 + ε)P 1{Lx∞ ≥ 1 + ε} ≤ Qx{Lx∞ ≥ 1 + ε} ≤ 1.

To prove the lower inequality in (6.10), it suffices to show that for some x and some
δ > 0,

P 1{Lxn ≥ 1 + δ} ≥ δ (6.11)

for all large n. This is where we will use the hypothesis that the Avez entropy is positive.
By Corollary 6.13 and the equivalent definition (6.3) of conditional entropy,

h = lim
n→∞

H(π(X1))−H(π(X1) |π(Xn))

= lim
n→∞

H(π(Xn))−H(π(Xn) |π(X1)).

Now by Lemma 6.17,

H(π(Xn))−H(π(Xn) |π(X1))

=
∑
x

∑
y

P 1({X1 = x} ∩ {Xn = y}) log
P 1(Xn = y |X1 = x)

P 1(Xn = y)

=
∑
x

∑
y

P 1({X1 = x} ∩ {Xn = y}) logLxn1{Xn=y};

in order that this remain bounded away from 0 as n → ∞ it is necessary that, for at least
some x with µ(x) > 0, the Radon-Nikodym derivative Lxn remain bounded away from 1
with substantial probability. This proves (6.11).

7 Appendix

7.1 A 30-Second Course in Measure–Theoretic Probability

If you have only had an undergraduate course in probability, you will know how to build
finite probability spaces that support finite sequences of independent, discrete random
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variables with prescribed distributions. Where does one find a probability space that
supports an infinite sequence of independent, identically distributed random variables, as
are needed to specify the steps of a random walk? One approach is to build everything on
the unit interval [0, 1], equipped with Lebesgue measure8, as follows. Suppose, for instance,
that you want an infinite sequence ξ1, ξ2, · · · of random variables taking values in the set
{a, b, c}with probabilities pa, pb, pc, respectively. Begin by partitioning the interval [0, 1] into
three non-overlapping intervals Ja, Jb, Jc of lengths pa, pb, pc, and define ξ1 = i on Ji. Next,
partition each of the intervals Ji into three sub-intervals Jia, Jib, Jic in the same proportions
pa, pb, pc, and for each of these nine sub-intervals, set ξ2 = j on Jij . By construction,

P{ξ1 = i and ξ2 = j} = pipj ,

so the random variables ξ1, ξ2 are independent, each with the same distribution. Now
continue the partitioning inductively, and use the sub-intervals of the nth generation to
define the random variable ξn. The result will be an infinite sequence ξ1, ξ2, ξ2, · · · of
independent, identically distributed distributions with the desired distribution.

7.2 Hoeffding’s Inequality and the SLLN

Proposition 7.1. Let Y1, Y2, · · · be independent real-valued random variables such that EYn = 0
and |Yn| ≤ 1. Let Sn =

∑
i≤n Yi be the nth partial sum. Then for any α > 0 and every

n = 1, 2, · · · ,
P {|Sn| ≥ α} ≤ 2 exp{−α2/2n}.

This is a standard result in elementary probability, and its (relatively easy) proof can be
found in most textbooks (and in this WIKIPEDIA article). Observe that the choice α = nε
gives exponential decay (in n) of the large deviation probability P{|Sn| ≥ nε}. Therefore,
in particular, if Y1, Y2, · · · are independent, identically distributed random variables with
mean EYi = 0 and satisfying |Yi| ≤ 1 then

∞∑
n=1

P{|Sn| ≥ nε} = E

( ∞∑
n=1

1{|Sn| ≥ nε}

)
<∞.

Thus, the expected number of times n that |Sn| ≥ nε is finite, and so this number is also almost
surely finite. Since this is true for every (rational) ε > 0, it follows that with probability one
the limsup of the sequence |Sn|/n is 0. This proves the strong law of large numbers in the
special case where the summands Yi are bounded.

7.3 Stirling’s Formula

Proposition 7.2. (Stirling) As n→∞,

n! ∼ nne−n
√

2πn. (7.1)
8For a brief introduction to the measure-theoretic underpinnings of probability theory, see my Lecture Notes

on Measure Theory, or for a more thorough exposition, see H. L. ROYDEN, Real Analysis.
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Corollary 7.3. As min(m,n−m)→∞,(
n

m

)
∼

exp{nH(mn )}√
2πn(mn )(n−mn )

(7.2)

where for all p ∈ (0, 1) and q = 1− p

H(p) = −p log p− q log q. (7.3)

In both statements, the relation ∼means that the ratio of the two sides converges to 1.
The corollary holds uniformly in the range

min(m,n−m) −→∞;

more precisely, for every ε > 0 there exists m(ε) > 0 such that if min(m,n − m) > m(ε)
then ∣∣∣∣(nm

)/ exp{nH(mn )}√
2πn(mn )(n−mn )

− 1

∣∣∣∣ < ε.

Exercise 7.4. Use the corollary to prove that the simple random walk in d ≥ 3 dimensions
satisfies

P{S2n = 0} ≤ Cn−d/2.
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