Ergodicity of accessible, center bunched, partially hyperbolic diffeos

Keith Burns
Amie Wilkinson
Northwestern

Toronto 2006
M compact
\(f \in \text{PHD}_\text{Vol}^2 (M) \)

\(0 \leq r(x) \leq \delta (x) \leq 1 \)
\(\nu, \tau, \hat{f}, \hat{\delta} \) continuous
\(\nu, \hat{\delta} \leq 1 \)

Center bunched: \(\nu, \hat{\delta} < \delta \hat{f} \)

Theorem (B. Wilkinson)
\(f \in \text{PHD}_\text{Vol}^2 (M) \), center bunched, essentially accessible \(\Rightarrow \) ergodic

Corollary IF \(\dim E^c = 1 \), then essential accessibility \(\Rightarrow \) ergodic (center bunching automatic)
Example

\[
\begin{pmatrix}
0 & 0 & 0 & -1 \\
0 & 0 & 8 & 0 \\
0 & 1 & 0 & -6 \\
0 & 0 & 1 & 8
\end{pmatrix}
\text{ on } \mathcal{M}^+
\]

is center bunched and essentially accessible.

Hartz

Essential accessibility persists under C^{22} small perturbations.

$\Rightarrow C^{22}$ robust ergodicity.
Hopf argument

Suffices to show that Birkhoff averages of continuous functions are \(ae \) constant

\[q : M \rightarrow IR \]

\[\hat{q}^+ (x) = \limsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} q (s^k x) \]

\[\hat{q}^- (x) = \limsup_{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} q (s^{-k} x) \]

Birkhoff The limits corresponding to \(\hat{q}^+ \) and \(\hat{q}^- \) exist and are equal \(ae \).

Hopf \(\hat{q}^+ \) constant on \(W^s \) leaves

\(\hat{q}^- \) constant on \(W^u \) leaves
Natural approach

\(\varphi_1, \varphi_2, \ldots \) dense set of continuous functions

\[G = \exists x : \hat{\varphi}_i^+ (x) = \hat{\varphi}_i^- (x) \text{ for all } i \in \mathbb{Z} \]

\(G \) has full measure

Suppose: any two points of \(G \) can be joined by a \(u.s.-\)path whose corners are in \(G \) (i.e. avoid the measure 0 set \(M \setminus G \))

Then \(f \) is ergodic
\[\hat{\phi}(x) = \frac{\phi^+(x) + \phi^-(x)}{2} \]

\[\exists x : \phi(x) \leq x \] is bi-essentially-saturated for any \(\alpha \)

Essential accessibility: essentially bi-saturated sets have 0 or full measure

Proposition

If \(A \) is bi-essentially-saturated, then the set \(\hat{A} \) of Lebesgue density points of \(A \) is bi-saturated
Absolute continuity with bounded Jacobian

\[\exists C > 1 \text{ s.t. } \forall x \]

\[\frac{1}{C} \text{ Vol}(x) \leq \int_{T} m_{w(t)}(x \cap w\text{lib}(t)) \, dt \leq C \text{ Vol}(x) \]

Brin-Pesin, Pugh-Sub après Anosov-Sinai: \(W^{u} \) and \(W^{s} \) are absolutely continuous

\(G_{e} = \{ x : \exists g \in W^{s}(x) \cap W^{u}(x) \text{ is in } G \} \)

\(G_{e} = \{ x : \cdots \cdots \} \subseteq G \)

\(E = \bigcap_{n \geq 1} G_{n} \) all have full measure
Useful observation

\[B = \text{box foliated by pieces of } W - \text{leaf, all of about the same volume} \]

If \(W \) is absolutely continuous of \(A \) is \(W \)-saturated, then density of \(A \) in \(B \) is approximately the same as the density of \(A \) in \(T \)
Key fact

Center bunching \implies

holonomy between center leaves along stable (or unstable) leaves is Lipschitz

False foliations

\exists t \in \forall P \in M, B(P, t)

has foliations

\hat{u}_P, \hat{s}_P, \hat{c}_P, \hat{c}_u, \hat{c}_s\n
tangent to the right spaces at P:

\hat{u}_P (p) = \hat{u}_P (p), \hat{s}_P (p) = \hat{s}_P (p)
\(\hat{W}^c \) leaves are subdivided by \(\hat{W}^C \) leaves and \(\hat{W}^S \) leaves.

This holonomy is Lipschitz.

Pugh, Shub, Wilkinson

careful version of usual smoothness estimates applied to show \(T \hat{W}^S \) is Lipschitz on a \(\hat{W}^c \) leaf.
Construction of fake foliations

\[\exp \circ \circ \exp \]

\[f \circ f \circ f \]

\[F = \exp^{-1} \circ f \circ \exp \]

\[F = \text{def} \]
Taliennes

\[\hat{f}^c_n(x) = \bigcup_{y \in \hat{\mathcal{W}}^c(x_{0^n})} f^{-n} \hat{w}^c(f^n y, z^n) \]

Choose \(\sigma, \tau > 0 \) such that
\[0 < 2 \sigma < \tau \leq \min \{ \varepsilon, \delta \} \]
Cu-juliennes are preserved under W^s-holonomy.
Suppose A is W^s-saturated and essentially W^u-saturated. Then

x is a Lebesgue density point for A

\iff

x is a \hat{f}_{cu}-density point of $A \cap \hat{W}^u_A (x)$

Absolute continuity of \hat{W}^s and the holonomy invariance of the \hat{f}_{cu}'s implies that \hat{f}_{cu}-density points are preserved under W^s holonomy
Replace \(\overline{J}_n() \)

by \(\hat{J}_n() \)

\[
\hat{J}_n(x) = f^* \hat{W}^u(f^n(x))
\]

Switch to union of \(W^s \) holonomy images of \(\hat{J}_n(x) \)

Now collapse along \(W^s \) leaves!