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1. Instantons

1.1. Notation. Throughout this talk, we will use the following notation:
G: a (semi-simple) Lie group, typically SU (n)
g: its Lie algebra
X: a (simply connected) 4-fold (typically, S4)
P : a principal G-bundle π : P → X
A: a connection on P
FA: its curvature
ΩpX (g): differential p-forms onX with values in g, i.e., Ω1

X (g) := Γ (T ∗X ⊗ g).

1.2. Primer on Connections. Recall from Peng’s talk that a connection on
P → X can be thought of in three ways:

(1) As a field of horizontal subspaces: TpP = HpP⊕VpP , where V P = ker (π∗).
(Note that Vp ∼= g, and Hp

∼= Tπ(p)X).
(2) As a g-valued 1-form A ∈ Ω1

X (g) which is invariant w.r.t. the induced
G-action on Ω1

X (g).
(3) Given a representation of G on W , as a vector bundle connection on the

associated bundle E := P ×GW → X

∇A : Ω0
X (E)→ Ω1

X (E) ,

where∇A is a linear map satisfying the Leibniz rule: ∇ (f · s) = f ·∇s+df ·s
for f ∈ C∞ (X), s ∈ Γ (X,E).

The first two of these definitions are seen to be equivalent by setting HpP = kerAp
for (2)→(1), or Ap = TpP → VpP (projection) for (1)→(2). For (3), we think of P
as being the frame bundle for E, and then describe a horizontal frame of sections.

For concreteness, we will mostly use (3) in this talk, i.e., fix a vector bundle
E → X, and then think of P as the frame bundle of E. However, everything can
still be done for principal bundles, too.

From ∇A, we can build a new operator

dA : ΩkX (E)→ Ωk+1
X (E)

by requiring that dA = ∇A for sections of E and dA (ω ∧ θ) = (dAω)∧θ+(−1)|ω| ω∧
dAθ. In general, d2

A 6= 0, and we give this a special name: the curvature

FA := d2
A : E → Ω2

X (E)
1
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Locally,
dA = d+A∧,

where A ∈ Ω1
X (E) is an E-valued 1-form, and

FA = dA+A ∧A ∈ Ω2
X (E)

The covariant derivative along v ∈ TX of a section s is given by ιvdAs.
If X has the additional structure of a Riemannian metric, the formal adjoint d∗A

to dA can be defined: ˆ
X

〈dAφ, ψ〉 dµ =
ˆ
X

〈φ, d∗Aψ〉 dµ.

If in addition dimX = 4, then from Hodge theory, 2-forms on X decompose into
self-dual and anti-self-dual parts. This extends to E-valued forms

Ω2
X (E) = Ω+

X (E)⊕ Ω−X (E) ,
so

FA = F+
A + F−A .

A connection A is called anti-self-dual (ASD) if F+
A = 0 (i.e., ?FA = −FA).

1.3. Yang-Mills Theory. Yang-Mills theory is a field theory defined for principal
G bundles π : P → X. The fields of the theory are connections, and the action is
(up to some constants)

(1.1) S (A) :=
ˆ
X

|FA|2 dµ.

S is conformally invariant in dimension 4: if g 7→ cg is a conformal transformation,
then dµ 7→ cddµ and FA 7→ c−2FA, so for dimX = d = 4,ˆ

X

c4−4 |FA|2 dµ =
ˆ
X

|FA|2 dµ.

For a G-invariant metric (which can be readily constructed if G is compact), this
action is gauge-invariant. |FA|2 is sometimes called the Yang-Mills density.

Proposition 1.1. The Euler-Lagrange equations of this action are
(1.2) d∗AFA = 0.

Proof. This is an exercise in variational calculus. I’ll skip most of the algebra.
Observe that

FA+tτ = d (A+ tτ) + (A+ tτ) ∧ (A+ tτ)
= FA + tdAτ + t2τ ∧ τ.

Then,
|FA+tτ |2 = |FA|2 + 2t 〈dAτ, FA〉+ t2 (· · · ) ,

so
0 = d

dt
S (A+ tτ) = 2

ˆ
X

〈dAτ, FA〉 dµ = 2
ˆ
X

〈τ, d∗AFA〉 dµ.

Hence the equations of motion are
d∗AFA = 0.

�
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An instanton is a topologically nontrivial solution to the classical equations of
motion with finite action.

Proposition 1.2. Anti-self-dual connections are instantons, i.e., topologically non-
trivial solutions to (1.2).

Proof. First we show that an ASD connection solves the equations of motion. The
main fact is

?d∗AFA = dA ? FA,

so if A is ASD, dA ? FA = −dAFA = 0 by the Bianchi identity.
When dimX = 4 and G = SU (n), ASD connections are topologically nontrivial:

for skew-adjoint matrices (A∗ = −A, where ∗ is conjugate transpose), i.e., u (n),

tr (ξ ∧ ξ) = − |ξ|2 ,
so

tr
(
F 2
A

)
= −

(∣∣F+
A

∣∣2 − ∣∣F−A ∣∣2) dµ.
|FA|2 = FA∧?FA =

∣∣F+
A

∣∣2 +
∣∣F−A ∣∣2, so a connection is ASD if and only if tr

(
F 2
A

)
=

|FA|2 dµ at every x ∈ X. Recall that for SU (n) bundles, c1 (E) vanishes because
tr (FA) = 0, so

c2 (E) = 1
8π2

ˆ
X

tr
(
F 2
A

)
dµ.

Hence,

S (A) =
ˆ
X

|FA|2 dµ =
ˆ
X

∣∣F−A ∣∣2 dµ+
ˆ
X

∣∣F+
A

∣∣2 dµ ≥ 8π2c2 (E) ,

with the bound achieved precisely when A is ASD. For this reason, physicists often
refer to c2 (E) as the “instanton number.” �

2. ADHM Construction

Let
Fij := [∇i,∇j ] = ∂

∂xi
Aj −

∂

∂xj
Ai + [Ai, Aj ] .

Then, instanton equation F+
A = 0 becomes

F12 + F34 = 0,
F14 + F23 = 0,
F13 + F42 = 0.(2.1)

The ADHM (Atiyah, Drinfeld, Hitchin, and Manin) construction gives a way of pro-
ducing ASD connections from linear algebraic data. The idea is to take a “Fourier
transform” of the ASD equations to produce a set of matrix equations which can
be more readily solved.

Substituting D1 := ∇1 + i∇2, D2 := ∇3 + i∇4, the equations (2.1) become
[D1, D2] = (F13 + F42) + i (F23 + F14) = 0,

[D1, D
∗
1 ] + [D2, D

∗
2 ] = −2i (F12 + F34) = 0,

so we can reduce the ASD equations to these “complex” covariant derivatives.
Because the ASD equation and |FA|2 are conformally invariant, an ASD connec-

tion on R4 with S (A) <∞ can be regarded as an ASD connection on S4.
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2.1. ADHM Data. Let U ∼= C2 as a complex manifold, with coordinates (z1, z2).
The inputs for the ADHM construction consist of:
(1) A k-dimensional complex vector space H with a Hermitian metric.
(2) An n-dimensional complex vector space E∞, with Hermitian metric and

symmetry group SU (n).
(3) A linear map T ∈ V ∗ ⊗ hom (H,H) defining maps τ1, τ2 : H → H.
(4) Linear maps π : H → E∞ and σ : E∞ → H.

The ADHM equations are

[τ1, τ2] + σπ = 0,
[τ1, τ

∗
1 ] + [τ2, τ

∗
2 ] + σσ∗ − π∗π = 0.(2.2)

If τ1, τ2, σ, π satisfy these equations, then the maps

α :=

τ1
τ2
π

 , β :=
[
−τ2 τ1 σ

]
define a complex

H
α// H ⊗ U ⊕ E∞

β // H

because
βα = [τ1, τ2] + σπ = 0.

In fact, it defines a whole C2-family of complexes because we can replace (τ1, τ2)
by (τ1 − z1 · 1, τ2 − z2 · 1) for any point (z1, z2) =: x ∈ U . We can then define a
family of maps

Rx : H ⊗ U ⊕ E∞ → H ⊕H

Rx := α∗x ⊕ βx
and, if αx is injective and βx is surjective, then Rx is surjective and kerRx =
(imαx)⊥ ∩ kerβx.

Definition. A collection (τ1, τ2, σ, π,E∞, H) of ADHM data is anADHM system
if

(1) it satisfies the ADHM equations (2.2), and
(2) the map Rx is surjective for each x ∈ U .

2.2. ADHM Construction. How can we use this information to construct a con-
nection? Suppose that we have an ADHM system. Now, construct the vector
bundle E → U with fibers

Ex = kerRx = kerβx/ imαx.

(Ex is the cohomology bundle of α,β).

Proposition 2.1. There is a holomorphic structure E on E.

(Proof omitted in the interest of time).
Let i : Ex ↪→ H ⊗U ⊕E∞ be inclusion, Pαx : H ⊗U ⊕E∞ → (imαx)⊥ and P βx :

H ⊗U ⊕E∞ → kerβx denote orthogonal projections, and Px := Pα ◦Pβ = Pβ ◦Pα
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be projection onto Ex. H⊗U⊕E∞ comes equipped with a flat product connection
d, and we can define an induced connection A on E by, for a section s : U → E,

dAs := Pdi (s) .

By virtue of this construction, A is unitary and compatible with the holomorphic
structure on E. It is also ASD.

Theorem 2.2 (ADHM). The assignment (τ1, τ2, σ, π)→ dA = Pdi sets up a one-
to-one correspondence between

(1) equivalence classes of ADHM data for group SU (n) and index k, and
(2) gauge equivalence classes of finite energy ASD SU (n)-connections A over

R4 with c2 (A) = k.

Note that (g, h) ∈ U (k)× SU (n) acts on ADHM data by

(τ1, τ2, σ, π) 7→
(
gτ1g

−1, gτ2g
−1, gσh−1, hπg−1) ,

so we mean classes of ADHM data up to this equivalence.

2.3. Example: BPST Instanton. The simplest example is to take k = 1 and
n = 2. This corresponds to solutions on SU (2) bundles with c2 = 1. Then, τ1, τ2
are just complex numbers, σ and π are complex vectors, and the ADHM equations
become

σ · π = 0, |σ|2 = |π|2 .
Pick π = (1, 0) and σ = (0, 1), then for (τ1, τ2), have

α∗x =


τ1
τ2
1
0


∗

=
[
τ1 τ2 1 0

]
, βx =

[
−τ2 τ1 0 1

]
,

and in general: replace (τ1, τ2) by (τ1 − z1 · 1, τ2 − z2 · 1) for any point (z1, z2) =:
x ∈ U , so

Rx =
[
τ1 − z1 τ2 − z2 1 0
−τ2 + z2 τ1 − z1 0 1

]
.

In particular, for (τ1, τ2) = (0, 0), have

Rx =
[
−z1 −z2 1 0
z2 −z1 0 1

]
.

A unitary basis for Rx is

{σ1, σ2} =


1

1 + |x|2


1
0
z1
−z2

 , 1
1 + |x|2


0
1
z2
z1


 .

Suppose that in this trivialization we let z1 = x1 + ix2, z2 = x3 + ix4, and the
connection matrix is

A =
∑

Aidxi,

so Ai is the matrix with (p, q)th entry

〈∇iσp, σq〉 =
〈
∂σp
∂xi

, σq

〉
.
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Then, written out in full, the connection form is

A = 1
1 + |x|2

(θ1i + θ2j + θ3k) ,

where i, j,k are a standard basis for su (2) and

θ1 = x1dx2 − x2dx1 − x3dx4 + x4dx3

θ2 = x1dx3 − x3dx1 − x4dx2 + x2dx4,

θ3 = x1dx4 − x4dx1 − x2dx3 + x3dx2

is such that dθ1, dθ2, dθ3 is a basis for the ASD two-forms on R4. The curvature
FA = dA+A ∧A is then

FA =
(

1
1 + |x|2

)2

(dθ1i + dθ2j + dθ3k) ,

and we can recover the other degrees of freedom lost in our choices of π, σ, τ1, τ2
by translations x 7→ x− y and dilations x 7→ x/λ to obtain other connections with∣∣FA(y,λ)

∣∣ = λ2(
λ2 + |x− y|2

)2 .

3. Moduli Space of ASD Connections

Definition 3.1. Let E → X be a bundle over a compact, oriented Riemannian
4-manifold X. The moduli space of ASD connections ME is the set of gauge
equivalence classes of ASD connections on E.

Recall that a gauge transformation is an automorphism u : E → E respecting
the structure on the fibers and reducing to the identity map on X. It acts on a
connection by the rule

∇u(A)s = u∇A
(
u−1s

)
= ∇As− (∇Au)u−1s,

where the covariant derivative ∇Au is formed by regarding it as a section of the
vector bundle End (E). In local coordinates, this looks like

u (A) = uAu−1 − (du)u−1.

The curvature transforms as a tensor under gauge transformations:

Fu(A) = uFAu
−1.

For connections on principal bundles P → X, this has a somewhat nicer expres-
sion: If u : P → P satisfies

(1) u (p · g) = u (p) · g and
(2) π (u (p)) = π (p)

for all g ∈ G, and A ∈ Ω1
P (g) is a connection,

u (A) :=
(
u−1)∗A.

Now we turn to some results about the structure of this moduli space.
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3.1. Uhlenbeck’s Theorems. First, there are a few technical results due to Uh-
lenbeck that allow us to leverage tools from the study of elliptic differential equa-
tions to make statements about ASD connections.

Theorem 3.2 (Uhlenbeck). There are constants ε1, M > 0 such that any connec-
tion A on the trivial bundle over B4 with ||FA||L2 < ε1 is gauge equivalent to a
connection Ã over B4 with

(1) d∗Ã = 0,
(2) lim|x|→1 Ãr = 0, and
(3) ||Ã||L2

1
≤M ||FÃ||L2 .

Moreover for suitable constants ε1, M , Ã is uniquely determined by these properties,
up to Ã 7→ u0Ãu

−1
0 for a constant u0 in U (n).

First, some notes about the theorem:

||Ã||2L2
1

=
ˆ
B4

∣∣∇Ã∣∣2 +
∣∣Ã∣∣2 dµ

is the Sobolev norm. d∗Ã is the “Coulomb” gauge condition (the importance of
which will be explained in the following section). Finally, lim|x|→1 Ãr = 0 means
that, for Ãr (ρ, σ) a function on S3, this function tends to 0 as r → 1.

The main power of Uhlenbeck’s Theorem is that it turns a system of nonlinear,
nonelliptic differential equations into an elliptic one. This section provides a sketch
of why that might be a desirable thing to do. Recall the d+ operator, defined by

d+ =
(

1
2 (1 + ∗)

)
◦ d,

which maps
d+ : Ω1

X → Ω+
X .

The ASD equation F+
A = 0 then becomes, in local coordinates,

(3.1) d+A+ (A ∧A)+ = 0.

This is a nonlinear, non-elliptic equation.
When d∗Ã = 0,

d∗ + d : ⊕iΩ2i+1
X → ⊕iΩ2i

X

is elliptic, so if H1 (X) = 0, then all 1-forms are othogonal to ker (d+ d∗).
Elliptic differential operator theory implies that

(3.2) ||A||L2
k
≤ const.

(
||d∗A||L2

k−1
+ ||dA||L2

k−1

)
for all k. When d∗A = 0, this becomes

||A||L2
k
≤ const. · ||FA||L2

k−1
,

and the ASD equation can be replaced by the elliptic differential equation

δA = 0,

where δ = d+ + d∗ is an elliptic operator.
The main consequence of Uhlenbeck’s Theorem relevant to the discussion of ASD

connections comes from combining it with the following theorem:
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Theorem 3.3 (Uhlenbeck). There exists a constant ε2 > 0 such that if Ã is any
ASD connection on the trivial bundle over B4 which satisfies d∗Ã = 0 and ||Ã||L4 ≤
ε2, then for all interior domains D ⊂ B4 and l ≥ 1,

||Ã||L2
l
(D) ≤Ml,D||FÃ||L2(B4)

for a constant Ml,D depending only on l and D.

Combining this with Theorem 3.2 gives

Corollary 3.4. For any sequence of ASD connections Aα over B4 with ||F (Aα) ||L2 ≤
ε, there is a subsequence α′ and gauge equivalent connections Ãα′ which converge
in C∞ on the open ball.

3.2. Results about the Moduli Space. Putting our previous results together,
we get the following statements:

Theorem 3.5 (Uhlenbeck’s Removable Singularities). Let A be a unitary connec-
tion over the punctured ball B4\ {0} which is ASD with respect to a smooth metric
on B4. If ˆ

B4\{0}
|FA|2 <∞,

then there is a smooth ASD connection over B4 gauge equivalent to A over the
punctured ball.

Note that this theorem implies that, for example, the ADHM construction gives
all of the ASD connections on S4 (not just R4).

Let Mk (G) denote the moduli space of ASD connections up to gauge trans-
formation with c2 = k, and Mk (G) denote the closure of Mk (G) in the space of
“ideal connections.” An ideal connection is a connection with curvature densities
possibly having δ-measure concentrations at up to k points of X, i.e., of the form

|FA|2 + 8π2
n∑
i=1

δxi

Then,

Theorem 3.6. Any infinite sequence in Mk has a weakly convergent subsequence
in Mk, with limit point in Mk.

Corollary 3.7. The space Mk is compact.

What do these spaces look like locally? Let G denote the group of gauge trans-
formations of E → X, and

ΓA = {u ∈ G : u (A) = A} ,

the isotropy group of A. Then,

Proposition 3.8. If A is an ASD connection over X, a neighborhood of [A] in M
is modeled on a quotient f−1 (0) /ΓA, where

f : ker δA → coker d+
A

is a ΓA-equivariant map and δA = d∗A + d+
A.
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