INSTANTON MODULI AND COMPACTIFICATION
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1. INSTANTONS

1.1. Notation. Throughout this talk, we will use the following notation:
G: a (semi-simple) Lie group, typically SU (n)
g: its Lie algebra
X: a (simply connected) 4-fold (typically, S*)
P: a principal G-bundle 7 : P — X
A: a connection on P
F4: its curvature
OF (g): differential p-forms on X with valuesin g, i.e., Q% (g) =T (T X ® g).

1.2. Primer on Connections. Recall from Peng’s talk that a connection on
P — X can be thought of in three ways:

(1) Asafield of horizontal subspaces: T, P = H,P&V, P, where VP = ker ().
(Note that V), = g, and H, = T,y X).

(2) As a g-valued 1-form A € QX (g) which is invariant w.r.t. the induced
G-action on QY (g).

(3) Given a representation of G on W, as a vector bundle connection on the
associated bundle F := P xg W — X

Va: Ok (B) = Qx (B),

where V 4 is a linear map satisfying the Leibniz rule: V (f - s) = f-Vs+df-s
for fe C>*(X), seT (X, E).
The first two of these definitions are seen to be equivalent by setting H,P = ker A,
for (2)—(1), or A, = T,P — V, P (projection) for (1)—(2). For (3), we think of P
as being the frame bundle for F/, and then describe a horizontal frame of sections.
For concreteness, we will mostly use (3) in this talk, i.e., fix a vector bundle
E — X, and then think of P as the frame bundle of E. However, everything can
still be done for principal bundles, too.
From V4, we can build a new operator

da: Q5 (E) = Q5 (B)
by requiring that d4 = V 4 for sections of F and d4 (w A 6) = (dAw)/\G—&—(—l)l“l wA
d 4. In general, d4 # 0, and we give this a special name: the curvature

Fr:=d4:E — Q% (E)
1
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Locally,
dg =d+ AN,
where A € Q4 (E) is an E-valued 1-form, and
Fa=dA+ANA€Q%(E)

The covariant derivative along v € T X of a section s is given by t,das.
If X has the additional structure of a Riemannian metric, the formal adjoint d*
to d4 can be defined:

[ @so.vydu= [ o.dz0)dn.
b'e b'e
If in addition dim X = 4, then from Hodge theory, 2-forms on X decompose into
self-dual and anti-self-dual parts. This extends to F-valued forms

0% (B) = 9% (B) @ Q% (B),
SO

Foa=Ff+Fj.

A connection A is called anti-self-dual (ASD) if F{ =0 (i.e., xF4 = —Fa).
1.3. Yang-Mills Theory. Yang-Mills theory is a field theory defined for principal

G bundles m : P — X. The fields of the theory are connections, and the action is
(up to some constants)

(1.1) S (A):= /X |Fal® dp.

S is conformally invariant in dimension 4: if g — cg is a conformal transformation,
then du +— c?dp and Fy +— ¢ 2Fy, so for dim X = d = 4,

[t matdn= [ 1FaP an
X X

For a G-invariant metric (which can be readily constructed if G is compact), this
action is gauge-invariant. |F A|2 is sometimes called the Yang-Mills density.

Proposition 1.1. The Fuler-Lagrange equations of this action are
(1.2) dyFa=0.

Proof. This is an exercise in variational calculus. I'll skip most of the algebra.
Observe that

Farir = dA+tr)+(A+tr)AN(A+1t7)
Fa+tdat + 27 AT
Then,
|Fager|” = |Fal” + 2t (dar, Fa) +£2 (),
S0

d
0—$S(A+t7)—2/

<dAT,FA>d/L=2/ <T,d2FA>d/L.
X X

Hence the equations of motion are

&% Fp = 0.
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An instanton is a topologically nontrivial solution to the classical equations of
motion with finite action.

Proposition 1.2. Anti-self-dual connections are instantons, i.e., topologically non-
trivial solutions to (1.2).

Proof. First we show that an ASD connection solves the equations of motion. The
main fact is
*dZFA = dA*FA,
so if A is ASD, dg x F'4 = —daF4 = 0 by the Bianchi identity.
When dim X = 4 and G = SU (n), ASD connections are topologically nontrivial:
for skew-adjoint matrices (A* = — A, where x is conjugate transpose), i.e., u(n),

tr(EAE) =~ ¢,
S0
r (F3) = = (|EA )" = [Fal) du
|Fal> = FAA%Fy = |Fy |2 +|Fy |27 so a connection is ASD if and only if tr (F3) =
|Fal® dp at every z € X. Recall that for SU (n) bundles, ¢; (E) vanishes because
tr (Fla) =0, so

1
co (F) = 52 /Xtr (F3) du.

Hence,
_2 2
S(A):/ \FA|2dM:/ |Fy | du—i—/ |F1|" du > 8n%cy (E),
X X X

with the bound achieved precisely when A is ASD. For this reason, physicists often
refer to co (F) as the “instanton number.” O

2. ADHM CONSTRUCTION

Let
F,; =[V;,V,] = iAj - iAi + [A;, Aj].
8:5,» 8.’)3j
Then, instanton equation F:{ = 0 becomes
Fio+Fz = 0,
Fiyu+Fys = 0,
(2.1) Fis+Fy = 0.

The ADHM (Atiyah, Drinfeld, Hitchin, and Manin) construction gives a way of pro-
ducing ASD connections from linear algebraic data. The idea is to take a “Fourier
transform” of the ASD equations to produce a set of matrix equations which can
be more readily solved.

Substituting Dy := V1 +iVa, Dy := V3 + iVy, the equations (2.1) become

[Dl,DT] + [DQ,D;] = -2 (F12 + F34) =0,
so we can reduce the ASD equations to these “complex” covariant derivatives.

Because the ASD equation and |F,|* are conformally invariant, an ASD connec-
tion on R* with S (A) < oo can be regarded as an ASD connection on S*.
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2.1. ADHM Data. Let U = C? as a complex manifold, with coordinates (z1, 22).
The inputs for the ADHM construction consist of:

(1) A k-dimensional complex vector space H with a Hermitian metric.

(2) An n-dimensional complex vector space E, with Hermitian metric and
symmetry group SU (n).

(3) A linear map T' € V* ® hom (H, H) defining maps 7,7 : H — H.

(4) Linear maps 7 : H - E, and 0 : Fo, — H.

The ADHM equations are

[T1,72] +om = 0,
(2.2) [11,77] + [12, 73] + 00 — 7" = 0.
If 71, 1o, 0, m satisfy these equations, then the maps

T1
o= |1, B = [77'2 i51 o]

define a complex

H—SHoUGE.,—~H
because
Ba =11, 7] + o = 0.

In fact, it defines a whole C2-family of complexes because we can replace (1, 72)
by (11 — 21 - 1,72 — 22 - 1) for any point (z1,22) =: & € U. We can then define a
family of maps

R,:HU®E,, >H®PH

R, =) @b,
and, if a, is injective and [, is surjective, then R, is surjective and ker R, =
(im aw)l Nker 3.
Definition. A collection (71,72, 0,7, Ex, H) of ADHM data is an ADHM system
if
(1) it satisfies the ADHM equations (2.2), and
(2) the map R, is surjective for each z € U.

2.2. ADHM Construction. How can we use this information to construct a con-
nection? Suppose that we have an ADHM system. Now, construct the vector
bundle E — U with fibers

E, =ker R, = ker 8,/ im a,.
(E, is the cohomology bundle of «,f).
Proposition 2.1. There is a holomorphic structure & on E.

(Proof omitted in the interest of time).
Let i : B, < H®U & Eq be inclusion, P® : HQ U & Es — (ima,)" and P5 :
H®U® Ey — ker 3, denote orthogonal projections, and P, := P,0Pg = Pgo P,
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be projection onto E,. H QU & E,, comes equipped with a flat product connection

d, and we can define an induced connection A on E by, for a section s : U — F,
das:= Pdi(s).

By virtue of this construction, A is unitary and compatible with the holomorphic

structure on F. It is also ASD.

Theorem 2.2 (ADHM). The assignment (11,72, 0,7) — da = Pdi sets up a one-

to-one correspondence between

(1) equivalence classes of ADHM data for group SU (n) and indez k, and
(2) gauge equivalence classes of finite energy ASD SU (n)-connections A over
R* with cy (A) = k.

Note that (g, h) € U (k) x SU (n) acts on ADHM data by
(r1,72,0,7) = (g9~ ", gr29~ ", goh™  hmg™h)
so we mean classes of ADHM data up to this equivalence.

2.3. Example: BPST Instanton. The simplest example is to take k = 1 and
n = 2. This corresponds to solutions on SU (2) bundles with ¢co = 1. Then, 71, 7
are just complex numbers, o and 7 are complex vectors, and the ADHM equations
become

2 2
o-m=0, lo|” = |=|”.
Pick # = (1,0) and o = (0,1), then for (71, 72), have

o = =Am = 10, B=[n n 0 1],
and in general: replace (71,72) by (71 — 21 - 1,72 — 22 - 1) for any point (21, 292) =:

zeU,so

Rx_|:—7'2+2:2 m—z 0 1

In particular, for (11,72) = (0,0), have

-7 ™—7Z 1 O]

[m o-m 10
Rm o |: zZ2 —ZzZ1 0 1:| ’
A unitary basis for R, is
1 0
1 0 1 1
01,00t =¢ — | _ |, ——5 | _
{ 1 2} 1+|£L’|2 Z1 1+|1’|2 29
—2Z2 z1

Suppose that in this trivialization we let 21 = x1 + iz2, 20 = x3 + ix4, and the

connection matrix is
A= E Aida:i,

so A; is the matrix with (p, ¢)th entry

Oo
(Viop,04) = <ax’:,aq> .
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Then, written out in full, the connection form is
1 . .
= ———— (6hi+ 02 + 03k),
1+ |z

where i, j, k are a standard basis for su (2) and

01 = x1dro — x9dr — Xx3dT4 + XT4dA3
0y = x1dr3z — x3dT1 — T4dX0 + TodAy,
03 = 1’1d1’4 — l’4dl’1 — l'gdl'g + l’gdl’g

is such that d,dfs,dfs is a basis for the ASD two-forms on R*. The curvature
Fqa=dA+ AN A is then

2

1

Fa=|——5 | (dbyi+dhsj+ dosk),
1+ |z

and we can recover the other degrees of freedom lost in our choices of 7, o, 71,72
by translations « — 2 — y and dilations z — x/\ to obtain other connections with

)\2
()\2 + |z — y|2)2-

|Fagny| =

3. MobuLI SPACE OF ASD CONNECTIONS

Definition 3.1. Let £ — X be a bundle over a compact, oriented Riemannian
4-manifold X. The moduli space of ASD connections My is the set of gauge
equivalence classes of ASD connections on F.

Recall that a gauge transformation is an automorphism u : £ — FE respecting
the structure on the fibers and reducing to the identity map on X. It acts on a
connection by the rule

Vuays = uVa (u_ls) = Vas — (Vau)u s,

where the covariant derivative V 4u is formed by regarding it as a section of the
vector bundle End (E). In local coordinates, this looks like

u(A) =uAu~! — (du)u~".
The curvature transforms as a tensor under gauge transformations:
Fu(A) = uFAu_l.

For connections on principal bundles P — X, this has a somewhat nicer expres-
sion: If u : P — P satisfies

(1) u(p-g)=u(p)-gand
(2) 7 (u(p)) =7 (p)

for all g € G, and A € QL (g) is a connection,
u(A) = (u_l)*A.

Now we turn to some results about the structure of this moduli space.
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3.1. Uhlenbeck’s Theorems. First, there are a few technical results due to Uh-
lenbeck that allow us to leverage tools from the study of elliptic differential equa-
tions to make statements about ASD connections.

Theorem 3.2 (Uhlenbeck). There are constants €1, M > 0 such that any connec-

—4
tion A on the trivial bundle over B~ with ||Fal|rz < €1 is gauge equivalent to a
connection A over B* with

(1) arA=0,
(2) limz1 A =0, and
(3) l[Allzz < MI[Fgl|Lz-
Moreover for suitable constants ey, M, A is uniquely determined by these properties,

up to A ugAugt for a constant ug in U (n).

First, some notes about the theorem:
<19 ) <12
1Al = | VA +[A]"dp
B4

is the Sobolev norm. d*A is the “Coulomb” gauge condition (the importance of
which will be explained in the following section). Finally, lim ;| A, = 0 means
that, for A, (p,o) a function on S®, this function tends to 0 as r — 1.

The main power of Uhlenbeck’s Theorem is that it turns a system of nonlinear,
nonelliptic differential equations into an elliptic one. This section provides a sketch
of why that might be a desirable thing to do. Recall the d* operator, defined by

dt = <;(1+*)>od,

d+:Q§( —>Q}

The ASD equation FI = 0 then becomes, in local coordinates,

which maps

(3.1) d*A4+(ANA)T =0.

This is a nonlinear, non-elliptic equation.

When d*A = 0,
d*+d: @03 - 0,0%
is elliptic, so if H* (X) = 0, then all 1-forms are othogonal to ker (d + d*).
Elliptic differential operator theory implies that

(3.2) 14]lzz < const. (lld"Allz | +[dAllrz )
for all k. When d*A = 0, this becomes
]| < const. - |Fallz
and the ASD equation can be replaced by the elliptic differential equation
0A =0,

where § = dT + d* is an elliptic operator.
The main consequence of Uhlenbeck’s Theorem relevant to the discussion of ASD
connections comes from combining it with the following theorem:



INSTANTON MODULI AND COMPACTIFICATION 8

Theorem 3.3 (Uhlenbeck). There exists a constant ea > 0 such that if fljs any
ASD connection on the trivial bundle over B* which satisfies d*A = 0 and ||A||ps <
€2, then for all interior domains D C B* and | > 1,

||AHL[2(D) < My pl||Fzllr2 (B4
for a constant M; p depending only on l and D.

Combining this with Theorem 3.2 gives

—4
Corollary 3.4. For any sequence of ASD connections Ao over B with [|F (Aa) [|z2 <
€, there is a subsequence o’ and gauge equivalent connections A, which converge
in C'°° on the open ball.

3.2. Results about the Moduli Space. Putting our previous results together,
we get the following statements:

Theorem 3.5 (Uhlenbeck’s Removable Singularities). Let A be a unitary connec-
tion over the punctured ball B*\ {0} which is ASD with respect to a smooth metric

on B*. If
/ |FA|2 < 00,
B*\{0}

then there is a smooth ASD connection over B* gauge equivalent to A over the
punctured ball.

Note that this theorem implies that, for example, the ADHM construction gives
all of the ASD connections on S* (not just R%).

Let My (G) denote the moduli space of ASD connections up to gauge trans-
formation with ¢y = k, and M, (G) denote the closure of My, (G) in the space of
“ideal connections.” An ideal connection is a connection with curvature densities
possibly having J-measure concentrations at up to k points of X, i.e., of the form

|Fal” +872) 4,

i=1

Then,

Theorem 3.6. Any infinite sequence in My, has a weakly convergent subsequence
in My, with limit point in M.

Corollary 3.7. The space My, is compact.

What do these spaces look like locally? Let & denote the group of gauge trans-
formations of F — X, and

Frhn={ue¥:u(Ad)=A},
the isotropy group of A. Then,

Proposition 3.8. If A is an ASD connection over X, a neighborhood of [A] in M
is modeled on a quotient f~'(0) /T a, where

f :kerda — coker dX

is a I' g-equivariant map and 64 = d + dX.
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