INSTANTON MODULI AND COMPACTIFICATION

MATTHEW MAHOWALD

- (1) Instanton (definition)
- (2) ADHM construction
- (3) Compactification

1. Instantons

- 1.1. Notation. Throughout this talk, we will use the following notation:
 - G: a (semi-simple) Lie group, typically SU(n)
 - g: its Lie algebra
 - X: a (simply connected) 4-fold (typically, S^4)
 - $P {:}$ a principal $G {-} \mathrm{bundle}\ \pi : P \to X$
 - A: a connection on P
 - F_A : its curvature
 - $\Omega^p_X\left(\mathfrak{g}\right): \text{ differential } p\text{-forms on } X \text{ with values in } \mathfrak{g}, \text{ i.e., } \Omega^1_X\left(\mathfrak{g}\right):=\Gamma\left(T^*X\otimes\mathfrak{g}\right).$

1.2. Primer on Connections. Recall from Peng's talk that a connection on $P \rightarrow X$ can be thought of in three ways:

- (1) As a field of horizontal subspaces: $T_p P = H_p P \oplus V_p P$, where $VP = \ker(\pi_*)$. (Note that $V_p \cong \mathfrak{g}$, and $H_p \cong T_{\pi(p)} X$).
- (2) As a g-valued 1-form $A \in \Omega^1_X(\mathfrak{g})$ which is invariant w.r.t. the induced G-action on $\Omega^1_X(\mathfrak{g})$.
- (3) Given a representation of G on W, as a vector bundle connection on the associated bundle $E := P \times_G W \to X$

$$\nabla_A : \Omega^0_X (E) \to \Omega^1_X (E),$$

where ∇_A is a linear map satisfying the Leibniz rule: $\nabla (f \cdot s) = f \cdot \nabla s + df \cdot s$ for $f \in C^{\infty}(X), s \in \Gamma(X, E)$.

The first two of these definitions are seen to be equivalent by setting $H_pP = \ker A_p$ for $(2) \rightarrow (1)$, or $A_p = T_pP \rightarrow V_pP$ (projection) for $(1) \rightarrow (2)$. For (3), we think of P as being the frame bundle for E, and then describe a horizontal frame of sections.

For concreteness, we will mostly use (3) in this talk, i.e., fix a vector bundle $E \to X$, and then think of P as the frame bundle of E. However, everything can still be done for principal bundles, too.

From ∇_A , we can build a new operator

$$d_A: \Omega^k_X\left(E\right) \to \Omega^{k+1}_X\left(E\right)$$

by requiring that $d_A = \nabla_A$ for sections of E and $d_A (\omega \wedge \theta) = (d_A \omega) \wedge \theta + (-1)^{|\omega|} \omega \wedge d_A \theta$. In general, $d_A^2 \neq 0$, and we give this a special name: the **curvature**

$$F_A := d_A^2 : E \to \Omega_X^2 (E)$$

Locally,

$$d_A = d + A \wedge,$$

where $A \in \Omega^1_X(E)$ is an *E*-valued 1-form, and

$$F_A = dA + A \wedge A \in \Omega^2_X(E)$$

The covariant derivative along $v \in TX$ of a section s is given by $\iota_v d_A s$.

If X has the additional structure of a Riemannian metric, the formal adjoint d_A^* to d_A can be defined:

$$\int_X \left\langle d_A \phi, \psi \right\rangle d\mu = \int_X \left\langle \phi, d_A^* \psi \right\rangle d\mu.$$

If in addition dim X = 4, then from Hodge theory, 2-forms on X decompose into self-dual and anti-self-dual parts. This extends to E-valued forms

$$\Omega_X^2(E) = \Omega_X^+(E) \oplus \Omega_X^-(E) \, ,$$

 \mathbf{SO}

$$F_A = F_A^+ + F_A^-.$$

A connection A is called **anti-self-dual** (ASD) if $F_A^+ = 0$ (i.e., $\star F_A = -F_A$).

1.3. **Yang-Mills Theory.** Yang-Mills theory is a field theory defined for principal G bundles $\pi : P \to X$. The fields of the theory are connections, and the action is (up to some constants)

(1.1)
$$S(A) := \int_X |F_A|^2 d\mu.$$

S is conformally invariant in dimension 4: if $g \mapsto cg$ is a conformal transformation, then $d\mu \mapsto c^d d\mu$ and $F_A \mapsto c^{-2}F_A$, so for dim X = d = 4,

$$\int_{X} c^{4-4} |F_{A}|^{2} d\mu = \int_{X} |F_{A}|^{2} d\mu.$$

For a G-invariant metric (which can be readily constructed if G is compact), this action is gauge-invariant. $|F_A|^2$ is sometimes called the **Yang-Mills density**.

Proposition 1.1. The Euler-Lagrange equations of this action are

$$(1.2) d_A^* F_A = 0.$$

Proof. This is an exercise in variational calculus. I'll skip most of the algebra. Observe that

$$F_{A+t\tau} = d(A+t\tau) + (A+t\tau) \wedge (A+t\tau)$$

= $F_A + td_A\tau + t^2\tau \wedge \tau.$

Then,

$$|F_{A+t\tau}|^2 = |F_A|^2 + 2t \langle d_A \tau, F_A \rangle + t^2 (\cdots),$$

 \mathbf{SO}

$$0 = \frac{d}{dt}S(A + t\tau) = 2\int_X \langle d_A\tau, F_A \rangle \, d\mu = 2\int_X \langle \tau, d_A^*F_A \rangle \, d\mu.$$

Hence the equations of motion are

$$d_A^* F_A = 0.$$

An **instanton** is a topologically nontrivial solution to the classical equations of motion with finite action.

Proposition 1.2. Anti-self-dual connections are instantons, i.e., topologically nontrivial solutions to (1.2).

Proof. First we show that an ASD connection solves the equations of motion. The main fact is

$$\star d_A^* F_A = d_A \star F_A,$$

so if A is ASD, $d_A \star F_A = -d_A F_A = 0$ by the Bianchi identity.

When dim X = 4 and G = SU(n), ASD connections are topologically nontrivial: for skew-adjoint matrices ($A^* = -A$, where * is conjugate transpose), i.e., $\mathfrak{u}(n)$,

$$\operatorname{tr}\left(\xi\wedge\xi\right)=-\left|\xi\right|^{2},$$

 \mathbf{so}

tr
$$(F_A^2) = -(|F_A^+|^2 - |F_A^-|^2) d\mu.$$

 $|F_A|^2 = F_A \wedge \star F_A = |F_A^+|^2 + |F_A^-|^2$, so a connection is ASD if and only if tr $(F_A^2) = |F_A|^2 d\mu$ at every $x \in X$. Recall that for SU(n) bundles, $c_1(E)$ vanishes because tr $(F_A) = 0$, so

$$c_2(E) = \frac{1}{8\pi^2} \int_X \operatorname{tr}\left(F_A^2\right) d\mu$$

Hence,

$$S(A) = \int_{X} |F_{A}|^{2} d\mu = \int_{X} |F_{A}^{-}|^{2} d\mu + \int_{X} |F_{A}^{+}|^{2} d\mu \ge 8\pi^{2}c_{2}(E),$$

with the bound achieved precisely when A is ASD. For this reason, physicists often refer to $c_2(E)$ as the "instanton number."

2. ADHM Construction

Let

$$F_{ij} := [\nabla_i, \nabla_j] = \frac{\partial}{\partial x_i} A_j - \frac{\partial}{\partial x_j} A_i + [A_i, A_j].$$

Then, instanton equation $F_A^+ = 0$ becomes

(2.1)
$$\begin{aligned} F_{12} + F_{34} &= 0, \\ F_{14} + F_{23} &= 0, \\ F_{13} + F_{42} &= 0. \end{aligned}$$

The ADHM (Atiyah, Drinfeld, Hitchin, and Manin) construction gives a way of producing ASD connections from linear algebraic data. The idea is to take a "Fourier transform" of the ASD equations to produce a set of matrix equations which can be more readily solved.

Substituting $D_1 := \nabla_1 + i\nabla_2$, $D_2 := \nabla_3 + i\nabla_4$, the equations (2.1) become

$$[D_1, D_2] = (F_{13} + F_{42}) + i (F_{23} + F_{14}) = 0,$$

$$[D_1, D_1^*] + [D_2, D_2^*] = -2i (F_{12} + F_{34}) = 0,$$

so we can reduce the ASD equations to these "complex" covariant derivatives.

Because the ASD equation and $|F_A|^2$ are conformally invariant, an ASD connection on \mathbb{R}^4 with $S(A) < \infty$ can be regarded as an ASD connection on S^4 .

- 2.1. **ADHM Data.** Let $U \cong \mathbb{C}^2$ as a complex manifold, with coordinates (z_1, z_2) . The inputs for the ADHM construction consist of:
 - (1) A k-dimensional complex vector space H with a Hermitian metric.
 - (2) An *n*-dimensional complex vector space E_{∞} , with Hermitian metric and symmetry group SU(n).
 - (3) A linear map $T \in V^* \otimes \hom(H, H)$ defining maps $\tau_1, \tau_2 : H \to H$.
 - (4) Linear maps $\pi: H \to E_{\infty}$ and $\sigma: E_{\infty} \to H$.

The **ADHM equations** are

(2.2)
$$[\tau_1, \tau_2] + \sigma \pi = 0,$$

$$[\tau_1, \tau_1^*] + [\tau_2, \tau_2^*] + \sigma \sigma^* - \pi^* \pi = 0.$$

If $\tau_1, \tau_2, \sigma, \pi$ satisfy these equations, then the maps

$$\alpha := \begin{bmatrix} \tau_1 \\ \tau_2 \\ \pi \end{bmatrix}, \qquad \qquad \beta := \begin{bmatrix} -\tau_2 & \tau_1 & \sigma \end{bmatrix}$$

define a complex

$$H \longrightarrow^{\alpha} H \otimes U \oplus E_{\infty} \xrightarrow{\beta} H$$

because

$$\beta \alpha = [\tau_1, \tau_2] + \sigma \pi = 0.$$

In fact, it defines a whole \mathbb{C}^2 -family of complexes because we can replace (τ_1, τ_2) by $(\tau_1 - z_1 \cdot 1, \tau_2 - z_2 \cdot 1)$ for any point $(z_1, z_2) =: x \in U$. We can then define a family of maps

$$R_x: H \otimes U \oplus E_\infty \to H \oplus H$$

$$R_x := \alpha_x^* \oplus \beta_x$$

and, if α_x is injective and β_x is surjective, then R_x is surjective and ker $R_x = (\operatorname{im} \alpha_x)^{\perp} \cap \ker \beta_x$.

Definition. A collection $(\tau_1, \tau_2, \sigma, \pi, E_{\infty}, H)$ of ADHM data is an **ADHM system** if

- (1) it satisfies the ADHM equations (2.2), and
- (2) the map R_x is surjective for each $x \in U$.

2.2. **ADHM Construction.** How can we use this information to construct a connection? Suppose that we have an ADHM system. Now, construct the vector bundle $E \rightarrow U$ with fibers

$$E_x = \ker R_x = \ker \beta_x / \operatorname{im} \alpha_x.$$

 $(E_x \text{ is the cohomology bundle of } \alpha,\beta).$

Proposition 2.1. There is a holomorphic structure \mathscr{E} on E.

(Proof omitted in the interest of time).

Let $i: E_x \hookrightarrow H \otimes U \oplus E_\infty$ be inclusion, $P_x^{\alpha}: H \otimes U \oplus E_\infty \to (\operatorname{im} \alpha_x)^{\perp}$ and $P_x^{\beta}: H \otimes U \oplus E_\infty \to \ker \beta_x$ denote orthogonal projections, and $P_x := P_\alpha \circ P_\beta = P_\beta \circ P_\alpha$

be projection onto E_x . $H \otimes U \oplus E_\infty$ comes equipped with a flat product connection d, and we can define an induced connection A on E by, for a section $s: U \to E$,

$$d_A s := P di(s)$$

By virtue of this construction, A is unitary and compatible with the holomorphic structure on E. It is also ASD.

Theorem 2.2 (ADHM). The assignment $(\tau_1, \tau_2, \sigma, \pi) \rightarrow d_A = Pdi$ sets up a oneto-one correspondence between

- (1) equivalence classes of ADHM data for group SU(n) and index k, and
- (2) gauge equivalence classes of finite energy ASD SU (n)-connections A over \mathbb{R}^4 with $c_2(A) = k$.

Note that $(g,h) \in U(k) \times SU(n)$ acts on ADHM data by

$$(\tau_1, \tau_2, \sigma, \pi) \mapsto (g\tau_1 g^{-1}, g\tau_2 g^{-1}, g\sigma h^{-1}, h\pi g^{-1}),$$

so we mean classes of ADHM data up to this equivalence.

2.3. **Example: BPST Instanton.** The simplest example is to take k = 1 and n = 2. This corresponds to solutions on SU(2) bundles with $c_2 = 1$. Then, τ_1, τ_2 are just complex numbers, σ and π are complex vectors, and the ADHM equations become

$$\sigma \cdot \pi = 0, \qquad |\sigma|^2 = |\pi|^2.$$

Pick $\pi = (1,0)$ and $\sigma = (0,1)$, then for (τ_1, τ_2) , have

$$\alpha_x^* = \begin{bmatrix} \tau_1 \\ \tau_2 \\ 1 \\ 0 \end{bmatrix}^* = \begin{bmatrix} \overline{\tau_1} & \overline{\tau_2} & 1 & 0 \end{bmatrix}, \qquad \beta_x = \begin{bmatrix} -\tau_2 & \tau_1 & 0 & 1 \end{bmatrix},$$

and in general: replace (τ_1, τ_2) by $(\tau_1 - z_1 \cdot 1, \tau_2 - z_2 \cdot 1)$ for any point $(z_1, z_2) =: x \in U$, so

$$R_x = \begin{bmatrix} \overline{\tau_1} - \overline{z_1} & \overline{\tau_2} - \overline{z_2} & 1 & 0\\ -\tau_2 + z_2 & \tau_1 - z_1 & 0 & 1 \end{bmatrix}.$$

In particular, for $(\tau_1, \tau_2) = (0, 0)$, have

$$R_x = \begin{bmatrix} -\overline{z_1} & -\overline{z_2} & 1 & 0\\ z_2 & -z_1 & 0 & 1 \end{bmatrix}.$$

A unitary basis for R_x is

$$\{\sigma_1, \sigma_2\} = \left\{ \frac{1}{1+|x|^2} \begin{bmatrix} 1\\ 0\\ \overline{z_1}\\ -z_2 \end{bmatrix}, \frac{1}{1+|x|^2} \begin{bmatrix} 0\\ 1\\ \overline{z_2}\\ z_1 \end{bmatrix} \right\}.$$

Suppose that in this trivialization we let $z_1 = x_1 + ix_2$, $z_2 = x_3 + ix_4$, and the connection matrix is

$$A = \sum A_i dx_i,$$

so A_i is the matrix with (p, q)th entry

$$\left\langle \nabla_i \sigma_p, \sigma_q \right\rangle = \left\langle \frac{\partial \sigma_p}{\partial x_i}, \sigma_q \right\rangle.$$

Then, written out in full, the connection form is

$$A = \frac{1}{1+\left|x\right|^{2}} \left(\theta_{1}\mathbf{i} + \theta_{2}\mathbf{j} + \theta_{3}\mathbf{k}\right),$$

where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are a standard basis for $\mathfrak{su}(2)$ and

$$\begin{aligned} \theta_1 &= x_1 dx_2 - x_2 dx_1 - x_3 dx_4 + x_4 dx_3 \\ \theta_2 &= x_1 dx_3 - x_3 dx_1 - x_4 dx_2 + x_2 dx_4, \\ \theta_3 &= x_1 dx_4 - x_4 dx_1 - x_2 dx_3 + x_3 dx_2 \end{aligned}$$

is such that $d\theta_1, d\theta_2, d\theta_3$ is a basis for the ASD two-forms on \mathbb{R}^4 . The curvature $F_A = dA + A \wedge A$ is then

$$F_{A} = \left(\frac{1}{1+\left|x\right|^{2}}\right)^{2} \left(d\theta_{1}\mathbf{i} + d\theta_{2}\mathbf{j} + d\theta_{3}\mathbf{k}\right),$$

and we can recover the other degrees of freedom lost in our choices of π , σ , τ_1, τ_2 by translations $x \mapsto x - y$ and dilations $x \mapsto x/\lambda$ to obtain other connections with

$$\left|F_{A(y,\lambda)}\right| = rac{\lambda^2}{\left(\lambda^2 + \left|x - y\right|^2\right)^2}.$$

3. MODULI SPACE OF ASD CONNECTIONS

Definition 3.1. Let $E \to X$ be a bundle over a compact, oriented Riemannian 4-manifold X. The **moduli space of ASD connections** M_E is the set of gauge equivalence classes of ASD connections on E.

Recall that a **gauge transformation** is an automorphism $u: E \to E$ respecting the structure on the fibers and reducing to the identity map on X. It acts on a connection by the rule

$$\nabla_{u(A)}s = u\nabla_A \left(u^{-1}s\right) = \nabla_A s - \left(\nabla_A u\right) u^{-1}s,$$

where the covariant derivative $\nabla_A u$ is formed by regarding it as a section of the vector bundle End(E). In local coordinates, this looks like

$$u(A) = uAu^{-1} - (du)u^{-1}.$$

The curvature transforms as a tensor under gauge transformations:

$$F_{u(A)} = uF_A u^{-1}.$$

For connections on principal bundles $P \to X$, this has a somewhat nicer expression: If $u: P \to P$ satisfies

(1)
$$u(p \cdot g) = u(p) \cdot g$$
 and

(2)
$$\pi(u(p)) = \pi(p)$$

for all $g \in G$, and $A \in \Omega^1_P(\mathfrak{g})$ is a connection,

$$u(A) := \left(u^{-1}\right)^* A$$

Now we turn to some results about the structure of this moduli space.

3.1. Uhlenbeck's Theorems. First, there are a few technical results due to Uhlenbeck that allow us to leverage tools from the study of elliptic differential equations to make statements about ASD connections.

Theorem 3.2 (Uhlenbeck). There are constants ϵ_1 , M > 0 such that any connection A on the trivial bundle over \overline{B}^4 with $||F_A||_{L^2} < \epsilon_1$ is gauge equivalent to a connection \tilde{A} over B^4 with

(1)
$$d^*\tilde{A} = 0$$

- (1) $a^{*}A = 0,$ (2) $\lim_{|x| \to 1} \tilde{A}_{r} = 0, and$
- (3) $||\tilde{A}||_{L^2_1} \leq M||F_{\tilde{A}}||_{L^2}.$

Moreover for suitable constants ϵ_1 , M, \tilde{A} is uniquely determined by these properties, up to $\tilde{A} \mapsto u_0 \tilde{A} u_0^{-1}$ for a constant u_0 in U(n).

First, some notes about the theorem:

$$||\tilde{A}||_{L_1^2}^2 = \int_{B^4} \left|\nabla \tilde{A}\right|^2 + \left|\tilde{A}\right|^2 d\mu$$

is the Sobolev norm. $d^*\tilde{A}$ is the "Coulomb" gauge condition (the importance of which will be explained in the following section). Finally, $\lim_{|x|\to 1} \tilde{A}_r = 0$ means that, for $\tilde{A}_r(\rho, \sigma)$ a function on S^3 , this function tends to 0 as $r \to 1$.

The main power of Uhlenbeck's Theorem is that it turns a system of nonlinear, nonelliptic differential equations into an elliptic one. This section provides a sketch of why that might be a desirable thing to do. Recall the d^+ operator, defined by

$$d^+ = \left(\frac{1}{2}\left(1+*\right)\right) \circ d,$$

which maps

$$d^+:\Omega^1_X\to\Omega^+_X.$$

The ASD equation $F_A^+ = 0$ then becomes, in local coordinates,

(3.1)
$$d^{+}A + (A \wedge A)^{+} = 0.$$

This is a nonlinear, non-elliptic equation.

When $d^*\tilde{A} = 0$,

$$d^* + d : \oplus_i \Omega_X^{2i+1} \to \oplus_i \Omega_X^{2i}$$

is elliptic, so if $H^{1}(X) = 0$, then all 1-forms are othogonal to ker $(d + d^{*})$. Elliptic differential operator theory implies that

(3.2)
$$||A||_{L^2_k} \le \text{const.} \left(||d^*A||_{L^2_{k-1}} + ||dA||_{L^2_{k-1}} \right)$$

for all k. When $d^*A = 0$, this becomes

$$||A||_{L^2_k} \leq \text{const.} \cdot ||F_A||_{L^2_{k-1}},$$

and the ASD equation can be replaced by the elliptic differential equation

 $\delta A = 0,$

where $\delta = d^+ + d^*$ is an elliptic operator.

The main consequence of Uhlenbeck's Theorem relevant to the discussion of ASD connections comes from combining it with the following theorem:

Theorem 3.3 (Uhlenbeck). There exists a constant $\epsilon_2 > 0$ such that if \tilde{A} is any ASD connection on the trivial bundle over B^4 which satisfies $d^*\tilde{A} = 0$ and $||\tilde{A}||_{L^4} \leq \epsilon_2$, then for all interior domains $D \subset B^4$ and $l \geq 1$,

$$||A||_{L^2_l(D)} \le M_{l,D} ||F_{\tilde{A}}||_{L^2(B^4)}$$

for a constant $M_{l,D}$ depending only on l and D.

Combining this with Theorem 3.2 gives

Corollary 3.4. For any sequence of ASD connections A_{α} over \overline{B}^4 with $||F(A_{\alpha})||_{L^2} \leq \epsilon$, there is a subsequence α' and gauge equivalent connections $\tilde{A}_{\alpha'}$ which converge in C^{∞} on the open ball.

3.2. Results about the Moduli Space. Putting our previous results together, we get the following statements:

Theorem 3.5 (Uhlenbeck's Removable Singularities). Let A be a unitary connection over the punctured ball $B^4 \setminus \{0\}$ which is ASD with respect to a smooth metric on B^4 . If

$$\int_{B^4 \setminus \{0\}} \left| F_A \right|^2 < \infty$$

then there is a smooth ASD connection over B^4 gauge equivalent to A over the punctured ball.

Note that this theorem implies that, for example, the ADHM construction gives all of the ASD connections on S^4 (not just \mathbb{R}^4).

Let $M_k(G)$ denote the moduli space of ASD connections up to gauge transformation with $c_2 = k$, and $\overline{M_k}(G)$ denote the closure of $M_k(G)$ in the space of "ideal connections." An **ideal connection** is a connection with curvature densities possibly having δ -measure concentrations at up to k points of X, i.e., of the form

$$|F_A|^2 + 8\pi^2 \sum_{i=1}^n \delta_{x_i}$$

Then,

Theorem 3.6. Any infinite sequence in M_k has a weakly convergent subsequence in $\overline{M_k}$, with limit point in $\overline{M_k}$.

Corollary 3.7. The space $\overline{M_k}$ is compact.

What do these spaces look like locally? Let \mathscr{G} denote the group of gauge transformations of $E \to X$, and

$$\Gamma_A = \{ u \in \mathscr{G} : u(A) = A \},\$$

the isotropy group of A. Then,

Proposition 3.8. If A is an ASD connection over X, a neighborhood of [A] in M is modeled on a quotient $f^{-1}(0)/\Gamma_A$, where

 $f: \ker \delta_A \to \operatorname{coker} d_A^+$

is a Γ_A -equivariant map and $\delta_A = d_A^* + d_A^+$.

References

- [ADHM] M. Atiyah, V. Drinfeld, N. Hitchin, and Y. Manin, "Construction of Instantons," Physics Letters A 65 (3) 185–187.
- [DK] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford Univ. Press, 1991.
- [L] A. J. Lindenhovius, "Instantons and the ADHM Construction," URL: http://dare.uva.nl/cgi/arno/show.cgi?fid=333494