
CURVES: VELOCITY, ACCELERATION, AND LENGTH

As examples of curves, consider the situation where the amounts ofn-commodities varies with
time t , q(t) = (q1(t), . . . , qn(t)). Thus, the amount of the commodities are functions of time. We
can also consider the prices of these commodities as functions of time,p(t) = (p1(t), . . . , pn(t)).

Another way that curves can arise in economics is the following. Assume there is a fixed pro-
duction of a single goodQ using inputs of laborL and capitalK , Q0 = F(L , K ) = L K . Let
w be the price of labor andr the price of capital. The quantities(L , K ) that minimize cost of

production depends on the parametersw andr , (L̃(w, r ), K̃ (w, r )) =

(√
r Q0/w,

√
wQ0/r

)
. As the

price of labor is varied keepingr = r0 fixed, a curve of optimal choices(L̃(w, r0), K̃ (w, r0)) =(√
r0Q0/w,

√
wQ0/r0

)
is determined as a function of the single variable, which is the price of labor.

3.1 Derivatives

Definition. Let r : R → Rn be a differentiable function. Theposition (vector)at timet is r(t).
The velocity (vector)is given by the derivatives of the position vector with respect to time,

v(t) = r ′(t). The speedis the length of the velocity vector, and is a scalar quantity. So, the
velocity includes both the speed and the direction of current motion.

Theaccelerationis the derivative of the velocity and the second derivative of the position,a(t) =

v′(t) = r ′′(t).

Example(1.2 Circle). As an example, we consider the point on a circle of radius 7 about the origin
as a function of time, i.e., the point changes with time. Using polar coordinates, letr (t) = 7 and
θ(t) = 3t , or x(t) = 7 cos(3t) and y(t) = 7 sin(3t). We can put the two components together
to get the position vector,

r(t) = (x(t), y(t)) = (7 cos(3t), 7 sin(3t)) .

The position vector is given as a function of timet , so this way of presenting this circle is called
theparametric form of the circle.

The point moves around the circle with increasing angle in polar coordinates, so the point moves
counter-clockwise: (i) whent = 0 then r(0) = (7, 0); (ii) when 3t = π/2 or t = π/6 then
r (π/6) = (0, 7); (iii) when 3t = π or t = π/3 thenr (π/3) = (-7, 0); (ii) when 3t = 3π/2 or t = π/2
then r (π/2) = (0, -7); (iii) when 3t = 2π or t = 2π/3 then r

(
2π/3

)
= (7, 0) and the point has

moved once around the circle.
The velocity vector isv(t) = (-21 sin(3t), 21 cos(3t)). Notice that the velocity is a vector. The

speed‖v(t)‖ = 21 is a scalar. Finally, the accelerationa(t) = (-63 cos(t), -63 sin(t)) is a vector.
Notice that for this exampler(t) · v(t) = 0. This says that the velocity vector is perpendicular

to the position vector, and is tangent to the circle. We see later that this is a consequences of the
fact that‖r(t)‖2 is a constant. �

Example(Ellipse). By making the coefficients of sine and cosine different, we obtain an ellipse
rather than a circle. Consider

r(t) = (x(t), y(t)) = (4 cos(t), 3 sin(t)) .
1
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Then (
x(t)

4

)2

+

(
y(t)

3

)2

= cos2(t) + sin2(t) = 1,

so the curve lies on the ellipse with semi-axes of length 4 and 3. Its velocity vector isv(t) =

(-4 sin(t), 3 cos(t)), and its speed is‖v(t)‖ =

√
16 sin2(t) + 9 cos2(t) and is not a constant.

In this example the velocity vector is not perpendicular to the position vector,r(t) · v(t) =

-7 sin(t) cos(t) 6= 0 except at certain times. �

Example(Circular Helix in R3). For this example letx(t) = 7 cos(3t), y(t) = 7 sin(3t), and
z(t) = 5t . (Compare with Examples 1.3 and 1.4 on pages 178-9.) The position vector is

r(t) = (7 cos(3t), 7 sin(3t), 5t) .

Thex andy coordinate are the same functions as the first example, so the point lies on a cylinder
of radius 7 about thez axis. The time to go once around the circle is still2π/3. However, in this
time,z

(
2π/3

)
= 10π/3 > 0 = z(0), so the point moves up in thez-direction. The motion is on what

is called acircular helix.
The velocity isv(t) = r ′(t) = (-21 sin(3t), 21 cos(3t), 5). The speed is‖v(t)‖ =

[
212

+ 52
]

=
√

466, which is a constant. The velocity vector has constant length, but it is not a constant vector
since is changes direction. Theaccelerationis a(t) = v′(t) = r ′′(t) = (-63 cos(3t), -63 sin(3t), 0).
Notice thata(t) 6= 0 even though the speed is a constant. The acceleration measure both the turning
(change of direction of the velocity) and the change of speed. In this example,a(t) · v(t) = 0, i.e.,
the acceleration is perpendicular to the velocity. This is a result of the fact that the speed is a
constant as we shall see.

The tangent lineto the curve at the pointr (π/9) =

(
7/2, 7

√
3/2, 5π/9

)
is parallel to the vector

v (π/9) =

(
-21

(√
3/2

)
, 21

(
1/2

)
, 5

)
, and is the line

(x, y, z) =

(
7/2, 7

√
3/2, 5π/9

)
+ (t − π/9)

(
-21

√
3/2, 21/2, 5

)
.

Note that we have used the parameter(t − π/9) so that att = π/9 the point on the line is the point
r (π/9). See Proposition 1.3. �

There are a few rule for the differentiations of products. If we consider the vectors as single
objections, then the product rules look very similar to the product rule for real valued functions.

Proposition (1.4). Assume thatp(t) andq(t) are C1 curves of vectors inRn and g(t) is a scalar
C1 function.

a. Dot product:
d

dt
(p(t) · q(t)) = p′

· q + p · q′.

b. Multiplication by a scalar function:
d

dt
(g(t)q(t)) = g′(t)q(t) + g(t)q′(t).

c. Cross product: If n= 3 and the curves are inR3, then
d

dt
(v × w) = v′

× w + v × w′.
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Proof. (a)

d

dt
(p(t) · q(t)) =

d

dt
(p1(t)q1(t) + p2(t)q2(t) + p3(t)q3(t))

= p′

1q1 + p1q′

1 + p′

2q2 + p2q′

2 + p′

3q3 + p3q′

3

= p′
· q + p · q′.

Thus, the derivative of the dot product is the derivative of the first term dot product with the second
plus the first term dot product with the derivative of the second.

The proof of cases (b) and (c) and we leave the proof of (c) to Exercise 3.1:28. �

Remark1. If we considerp as the bundle (vector) of prices andq as the bundle (vector) of quan-

tities, then the dot product gives the value of the commodities. The derivative
d

dt
(p(t) · q(t)) =

p′
· q + p · q′ contains two terms: the first gives the change of value due to the change of prices

with the amount of commodities fixed, and the second gives the change of value due to the change
in the amount of commodities with the prices fixed.

We use the rule for the derivative of the dot product to prove two of the facts which we illustrated
above for examples.

Theorem (1.7). Let r(t) be a C1 curve of vectors. Then‖r(t)‖ = constant if and only ifr(t) and
r ′(t) are perpendicular for all t .

Proof. Using the rule for the derivative of a product,

d

dt
[r(t) · r(t)] = r ′(t) · r(t) + r(t) · r ′(t)

= 2 r(t) · r ′(t).

If ‖r(t)‖ = c for all t , then 0=
d
dtc

2
=

d
dt [r(t) · r(t)] = 2r(t) · r ′(t) andr(t) · r ′(t) = 0. On the

other hand, ifr(t) · r ′(t) = 0, then 0= 2r(t) · r ′(t) =
d
dt [r(t) · r(t)] and‖r(t)‖ =

√
r(t) · r(t)

must be a constant. �

Theorem. Let r(t) be a C2 curve of vectors andv(t) = r ′(t). Then, the speed‖v(t)‖ = constant
if and only if the velocityv(t) and the accelerationa(t) = v′(t) are perpendicular for all t .

Proof. Using again the rule for the derivative of a product,

d

dt
[v(t) · v(t)] = v′(t) · v(t) + v(t) · v′(t)

= 2v(t) · a(t).

If ‖v(t)‖ = c for all t , then 0=
d
dtc

2
=

d
dt [v(t) · v(t)] = 2v(t) · a(t), v(t) · a(t) = 0, and these

two vectors are perpendicular for allt . On the other hand, ifv(t) ·a(t) = 0, then 0= 2v(t) ·a(t) =

d
dt [v(t) · v(t)], and the speed‖v(t)‖ =

√
v(t) · v(t) must be a constant. �

Remark2. For the circular helix considered earlier, the speed is a constant and the acceleration is
perpendicular to the velocity as we noted.
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Decomposition of the Acceleration (cf. 3.2)

We give a treatment that avoids using the parameterization by arc length and does not define
curvature. (cf. Section 3.2.) We are given the two vector quantities of velocity and acceleration.
It is natural to breakup the acceleration into the component alongv(t) and the normal component.
We shall show that these two components measures the change in speed and the change in direction
respectively.

Definition. Theunit tangent vectoris the vector of length one in the direction of the velocity vector,
T(t) = v(t)/‖v(t)‖. This gives the direction of motion.

Thescalar component of acceleration along the velocityis

aT (t) = compv a =
v(t) · a(t)

‖v‖
.

Thevector component of acceleration along the velocityis

aT (t) = projv a = aT (t) T(t) =

(
v(t) · a(t)

v · v

)
v.

Thevector normal component of the accelerationis

aN(t) = a(t) − aT (t).

Thescalar normal component of the accelerationis aN(t) =

√
‖a(t)‖2 − aT (t)2 = ‖aN(t)‖.

Theorem. Let r(t) be a differentiable curve. Then the following hold.

a. The change in speed, derivative of the speed, equals the tangential component of the ac-
celeration: d

dt‖v(t)‖ = aT (t).
b. The change in direction, derivative of the unit tangent vector, equals the normal component

of the acceleration:T′(t) =
1

‖v(t)‖
aN(t).

Proof. The following two calculation using the product rule proves the claims:
d

dt
‖v(t)‖ =

d

dt
(v(t) · v(t))

1
2

=
1
2 (v(t) · v(t))

-1
2 2v(t) · a(t)

=
v(t) · a(t)

‖v(t)‖
= aT (t).

T′(t) =
d

dt

(
v(t)

‖v(t)‖

)
=

(
a(t)

‖v(t)‖

)
−

(
aT (t)

‖v(t)‖2

)
v(t)

=

(
1

‖v(t)‖

)
(a(t) − aT (t))

=

(
1

‖v(t)‖

)
aN(t).

�
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3.1 Anti-derivatives

Example 1.6 in Colley, discusses the way in which the anti-derivative can be applied to vector
quantities. We illustrate this process for another example.

Example.Assume thatr ′(t) =
(
3t2, t, −2t

)
is known and also thatr(0) = (1, 2, 3). Sincex′(t) =

3t2, x(t) = t3
+ Cx. Since 1= x(0) = Cx, we get thatx(t) = t3

+ 1. In a similar way,
y(t) = t2

/2 + 2, andz(t) = −t2
+ 3. Combining, we get the vector

r(t) =

(
t3

+ 1, t2
/2 + 2, −t2

+ 3
)

.

We could do this all in one process by considering vectors. First, taking the anti-derivative ofr ′(t),

r(t) =

(
t3

+ Cx,
t2
/2 + Cy, −t2

+ Cz

)
.

Evaluating att = 0,
(1, 2, 3) = r(0) =

(
Cx, Cy, Cz

)
.

Therefore,
r(t) =

(
t3

+ 1, t2
/2 + 2, −t2

+ 3
)

.

This example illustrates the fact that if we know the initial position and the velocity at each time
then we can determine the position at each time. �

Example(1.6). Assume thata(t) = −g j , whereg is a constant, the gravitational constant. Assume
also thatr(0) = 0 andv(0) = v0 = v0 cos(θ)i + v0 sin(θ)j is known.

Integrating the vectora(t) once, we getv(t) = −gt j + C. Then,v(0) = v0 = C, so

v(t) = −gt j + v0.

Integrating a second time, we getr(t) = −
g
2 t2 j + v0 t + C2. Again, taking the values att = 0,

C2 = r(0) = 0, so
r(t) = −

g
2 t2 j + v0 t.

Roger Ramjet hits the ground again wheny(t1) = 0,

0 = y(t1) = −
g
2 t2

1 + v0 sin(θ)t1

t1 =
2v0 sin(θ)

g
.

The horizontal distance traveled is

x(t1) − x(0) = v0 cos(θ)t1 =
2v2

0 sin(θ) cos(θ)

g
=

v2
0 sin(2θ)

g
.

This is maximized for sin(2θ) = 1, 2θ = π/2, or θ = π/4. �
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3.2 Length of a Curve

We cover the part of Section 3.2 dealing with the length of a curve. Since it is in our textbook,
we merely sketch the results.

Definition. Let r(t) be a continuous curve inR3. (The definitions inRn are similar.) The portion
of the curve fromt = a to t = b is split up into pieces using the pointsr(ti ) = (xi , yi , zi ) with
a = t0 < t1 < · · · < tn = b. Letting1xi = xi − xi −1, 1yi = yi − yi −1, and1zi = zi − zi −1,

the distance between the pointsr(ti −1) andr(ti ) is
√

1x2
i + 1y2

i + 1z2
i . (The distance along the

curve is probably a bit longer.) Thelength of the curvefrom t = a to t = b is

L(r) = lim
max 1ti →0

n∑
i =1

√
1x2

i + 1y2
i + 1z2

i ,

provided the limit exists. When the length exists, the curve is calledrectifiable, and when the limit
does not exist it is callednon-rectifiable.

The following is a theorem and not a definition.

Theorem(Definition 2.1). Assume thatr : [a, b] → R3 is a C1 curve. Then the curve is rectifiable
and

L(r) =

∫ b

a
‖r ′(t)‖ dt.

Idea of the proof.

L(r) = lim
max 1ti →0

n∑
i =1

[
1x2

i + 1y2
i + 1z2

i

1t2
i

] 1
2

1ti

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ b

a
‖r ′(t)‖ dt,

�

Example(2.2). For the helixr(t) = (a cos(t), a sin(t), bt), the speed‖r ′(t)‖ =
√

a2 + b2, so the
length of the curve fromt = 0 to t = 2π is∫ 2π

0

√
a2 + b2 dt = 2π

√
a2 + b2.

�

Example.The curver(t) =
(
t, t sin(1/t)

)
is non-rectifiable. The velocity isr ′(t) =(

1, sin(1/t) −
1
t cos(1/t)

)
and the speed is 1+ sin2(1/t) −

2
t sin(1/t) cos(1/t) +

1
t2 cos2(1/t) that is

not integrable. �

It is possible to calculate the distance traveled up to a given time and determine the timet in
terms of this distance (or arc length). The following two examples illustrate this procedure.
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Example(2.3). If the speed is a constant, as forr(t) = (a cos(t), a sin(t), bt), then it is possible to
solve for the time as a function of the distance traveled:

‖r ′(t)‖ =

√
a2 + b2

s(t) =

∫ t

0

√
a2 + b2 dτ =

√
a2 + b2 t,

t =
s

√
a2 + b2

,

Then, the position as a function of the distance traveled is

x(s) =

(
a cos

(
s

√
a2 + b2

)
, a sin

(
s

√
a2 + b2

)
,

bs
√

a2 + b2

)
.

�

Example(2.4). As given in Example 2.4 in our textbook, forr(t) =

(
t,

√
2

2 t2, 1
3 t3

)
,

r ′(t) =

(
1,

√
2 t, t2

)
, ‖r ′(t)‖ =

√
1 + 2 t2 + t4 = 1 + t2, and the length from 0 tot is

s(t) =

∫ t

0
1 + τ2 dτ = t +

t3

3
.

It is not easy to writet as an explicit function ofs, but
ds

dt
= 1 + t2 > 0, so the distance is strictly

increasing as a function oft . Therefore, the distance traveled determines the time and the position
on the curve. �

3.2 The Differential Geometry of Curves

Our textbook uses the length of a curve to give a new parameterization using arc length. Using
this parametrization, it is possible to define two geometric quantities, curvature and torsion, that
determine the shape of the curve. I will not ask you to calculate the curvature and torsion. However,
you will be held responsible to using the tangential and normal components of the acceleration.

As long asds
dt = ‖v‖ 6= 0,

v =
dr
dt

=
dr
ds

ds

dt
=

dr
ds

‖v‖ and

dr
ds

=
v

‖v‖
= T(t).

Thus, the derivative of the position with respect to arc length gives the unit tangent vector. (I find

the equationr ′(t) = r ′(s)
ds

dt
in the book confusing.)

The book (and the usual treatment in differential geometry) proceeds to define some quantities
that depend on the shape of the curve and not the speed in which it is traversed. The curvature

κ =

∥∥∥∥dT
ds

∥∥∥∥ =
‖T′

‖

‖v‖
.
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Because‖T(t)‖ ≡ 1, T′(t) is perpendicular toT(t). If T′(t) 6= 0, then the unit vector in the
direction ofT′(t),

N =
T′

‖T′‖
=

dT
ds

‖
dT
ds‖

.

is called theprincipal normal vector. CompletingT andN to a basis ofR3,

B = T × N.

is called thebinormal vector. At each point with T′(t) 6= 0, the three vectors(T, N, B) form a
basis ofR3. The derivative ofB defines thetorsionτ by the equation

dB
ds

= -τ N.

(Some proof is required to show that
dB
ds

is a scalar multiple ofN.)


