MARKQOV PROCESSES

In the Linear Algebra book by Lay, Markov chains are introduced in Sections 1.10 (Difference Equations)
and 4.9. In this handout, we indicate more completely the properties of the eigenvalues of a stochastic matrix.

Markov processes concern fixed probabilities of making transitions between a finite number of states. We
start by defining a probability transition matrix or stochastic matrix.

A probability vectorp is vector with each componemt > 0 and the sum of the components equal to

one, , p =1

Definition1. A n x n matrix M with real entriesam; is called astochastic matri>or probability transition
matrix provided that each column & is a probability vector. An entryn;; is the probability of going from
the j' state to thé™ state and satisfies @ m;; < 1. The total probability of going from th¢" state to
some other state is },; m;; = 1 for all j. so each column sums to one.

Remark2. Warning In most applications of Markov processes (and Markov chaimg)is usually the
probability of going from the™ state to thej " state so thé is replaced by its transpodeé= M T, which

has row sum zero. Then, when we defined the action on a state vector (below), we have to multiply a row
vector vector on the left rather than the usual column vector on the KgN,

Note that if tha ™ row has all zero entries, then there is no way to get to'thetate. Therefore, we might
as well drop it from consideration. Therefore, we always assume that each row has some nonzero entry.

If every column has only one nonzero entry, then all the entries are 0Os and 1s: each state goes to a unique
next state. If it also has the property that each row has some nonzero entry, then each row has one 1 and
there is a unique state that comes to edestate. Such a matrix is calledp@rmutation matrixit is not
“stochastic” so we assume some column has more than one nonzero entry.

Assume thaM is ann x n stochastic matrix. Assume that some material is spread out amongtates,

with x/¥ > 0 the amount of material at th" state at timeg andx@ = (x;”, ..., x{")T be the column

vector of the amount of material at tingein all the states. The material from thH& state at time 0 that is
returned to the™" state at time 1 is given oy xj(o). The total amount at thid" state at time 1 is the sum of
the material from all the states, or

o ©)

By the preceding equation for each component,
XD = Mx©,

and, more generally,
for the transition from the material at the state at tiqné to timeq. By induction x@ = M9x©,

Notice that the total amount of material at timés the same as at tintg-1:
@ _ @D
Zi X = Zi (ZJ m”xj )
_ ) @D
- Zj (Z| m'l) Xj
= X,
j

(We use the fact that the column sums are 1.) By induction, the total arXoamhains the same for all time

. ) . @,
periods,y; X = 3", x"Y = ... = 3, x(©. Call this total amounX = 3", x© Then,p|¥ = %" /x is
1
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the proportion of the material at t&" state at timey. Letting

1

be the vector of these proportions, we get a probability vector. Then,
X(Q'l)

Mp(Q'l) — M X

X

_ %X(q)
= p@;
thus, the probability vectors also transform through multiplication by the mistrix

Definition3. For a stochastic matrid , the transformatiop@ = Mp @Y on probability vectors is called a
(finite) Markov process

For a given initial probability vectop®, the sequence of resulting iterai@d® = M9p© is called a
Markov chain

Definition 4. A stochastic matriXM is calledregular provided that there is g5 > 0 such thatM® has

all positive entries, i.e., it is possible to make a transition from any state to any other state with exactly

go transitions. It then follows that1% has all positive entries fof > qg. A regular stochastic matrix
automatically has the properties that each row has some nonzero entry and some column has more than one
nonzero entry.

Definition5. A stochastic matrix is callettreducible provided that it is possible to get from each state to
any other state by making a finite number of transitions. More precisely, for any pair of Gtatgs, there
areq > 1 that can depend affy, jo) and indicesjy with 1 < jy <nfork=1,...,q, suchthaty =ipand
mj . > 0fork =1,...,g. This means that for each pair of states jo), there is ag > 1 such that the
(io, jo)-entry ofMY is nonzero.

Since a stochastic matrid always has column sum on€l, ..., H)M = O, M1, ..., Y Min) =
(1,...,1). Taking the transposé " (1,..., )T = (1,..., 1T, andMT always hag1,...,1)T as an
eigenvector corresponding to the eigenvalue 1. SMéeandM have the same eigenvaluds,always has
1 as an eigenvalue for some eigenvegtar

The following theorem gives conditions on the eigenvalues and eigenvectors for any stochastic matrix and
for a regular stochastic matrix.

Theorem 6 (Perron—Frobenius)(a) Assume thaM is a stochastic matrix with each row containing a
nonzero entry. Then,

(i) M has a probability vectop* with all p; > 0 as an eigenvector for the eigenvaliieand

(ii) all the eigenvalues. of M satisfy|A| < 1.
(b) Assume tha is a regular stochastic matrix.

(i) The matrixM has1 as an eigenvalue of multiplicity one (i.d.js a simple root of the characteristic
equation). An eigenvectgr for the eigenvalue 1 can be chosen as a probability vector with;alt f.

(i) All the other eigenvalues; have|x;| < 1. If vk is a eigenvector foky, theny"; vk = 0.

(iii) If p is any probability vector with all p> Oand)_;, pi = 1, thenp = p* + Z?ZZ yiVK for some
choice of the y. Also,M9p converges t@* as q goes to infinity.

See [3] for a proof using iteration, [2] for a proof using norms of matrices, and Chapter XllII in Volume Il
of [1] for more general results.



MARKOV PROCESSES 3
We now give some examples.

Example7. Let

05 02 03
M=]03 08 03].
02 0 04

A direct calculations shows tht? has all positive entries, 9d is regular. This matrix has eigenvalues 1,
0.5, and 02. (We do not give the characteristic polynomial, but do derive an eigenvector for each of these
eigenvalues.)

Forx =1,

-05 02 03
M—-1=1]03 -02 03

02 0 -06

1 -04 -06 1 0 -3
~10 -008 048 ~|0 1 -6].
0 008 -048 00

0
Thus,v; = 3vz andv, = 6vs. Since we want = vq + vo + v3 = (3+ 6+ 1)v3 = 10v3, v3 = 0.1, and
p* =v!=(0.3,0.6,01)T.

Fori, = 0.5,
0 02 03
M—-051=]03 03 03

02 0 -01
2 0 -1 2 0 -1

~10 2 3}]~10 2 3
111 0 1 15
2 0 -1

~10 2 3].
0 0 O

Thus, 21 = vs, 2v, = -3v3, andv? = (1, -3, 2)T is an eigenvector. Notice that+vy+v3 =1-3+2 =0,
as Theorem 6 says must be the case.

Fori; = 0.2,
0.3 02 03
M-021={03 06 03

02 0 02
1 01 1 01

~13 6 3]~]0 6 0
3 2 3 0 20
1 01

~10 1 0]}.
0 0O

Thus,v; = -v3, v, = 0, andv® = (1, 0,-1)" is an eigenvector. Againg + v +v3=14+0—1=0.
If the original probability vector is given by® = (0.45,0.45,0.1), then

1 1
©=(0.3,06,01" +=(1,-3,2T + —(1,0,-1)7
p? =(03,0601)" +~(1,-3,2)" + —(1,0.-1)
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and

M@ = (0.3,0.6 01)T+i z q(1 -3 2)T+i : q(10-1)T
. 9 ] . 20 2 &l 9 10 5 9 b 9

which converges to the probability vectpt = (0.3,0.6,0.1)" asq goes to infinity. This convergence of
the iterates holds for any initial probability vectof’. See Theorem 6. |

Example8 (Complex Eigenvalues)The following stochastic matrix

06 03 01
M=]01 06 03
03 01 06

illustrates the fact that an regular stochastic matrix can have complex eigenvalues. The eigenvalues are
A =1land 04+i0.1+/3. Notice that0.4 +i 0.1+/3| = +/0.16+ 0.03 = +/0.19 < 1. The eigenvectors
are(}s, Y3, 13" and(-1, -1,2)" +i(v/3,-v/3,0). n

Exampled (Not irreducible) An example of a stochastic matrix that is not irreducible is given by

08 03 0 0
Mo |02 07 0 0
| o o o6 03

0O 0 04 o7

which has eigenvalugs= 1, 1, 05, and 03. Notice that it is possible to go between states 1 and 2, and it

is possible to go between and states 3 and 4, but it is not possible to go from the states 1 and 2 to the states 3
and 4. Since it is not irreducible, it is also not regular. The eigenvectossfod arev® = (0.6,0.4,0,0)T,

v2 = (0, 0,37, %7, and any linear combinations ef andv?. In particular, the average of andv? is an
eigenvector that satisfies the conditions of the Perron-Frobenius Thaorem(0.3, 0.2, 314, %14T. W

Examplel0 (Not Regular) An example of a stochastic matrix that is irreducible, but not regular, is given
by

0 0 08 03
00 02 07
M=110 0 ol
01 0 0

which has eigenvalues = 1, -1, and++/0.5. Here, it is possible to get from any state to any other state,

but starting at state one, the odd iterates are always at either states 3 or 4 and the even iterates are always
at either states 1 or 2. Thus, there is no one power for which all the transition probabilities are positive.
Therefore M is not regular. Also, this matrix has another eigenvalue -1 with absolute value equal to one.
The probability eigenvector for the eigenvalue 10s3, 0.2,0.3,0.2)T. |
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