
MARKOV PROCESSES

In the Linear Algebra book by Lay, Markov chains are introduced in Sections 1.10 (Difference Equations)
and 4.9. In this handout, we indicate more completely the properties of the eigenvalues of a stochastic matrix.

Markov processes concern fixed probabilities of making transitions between a finite number of states. We
start by defining a probability transition matrix or stochastic matrix.

A probability vectorp is vector with each componentpi ≥ 0 and the sum of the components equal to
one,

∑
i pi = 1.

Definition1. A n × n matrix M with real entriesmi j is called astochastic matrixor probability transition
matrixprovided that each column ofM is a probability vector. An entrymi j is the probability of going from
the j th state to thei th state and satisfies 0≤ mi j ≤ 1. The total probability of going from thej th state to
some other state is 1,

∑
i mi j = 1 for all j . so each column sums to one.

Remark2. Warning: In most applications of Markov processes (and Markov chains)mi j is usually the
probability of going from thei th state to thej th state so theM is replaced by its transposeN = M T , which
has row sum zero. Then, when we defined the action on a state vector (below), we have to multiply a row
vector vector on the left rather than the usual column vector on the right,xTN.

Note that if thei th row has all zero entries, then there is no way to get to thei th state. Therefore, we might
as well drop it from consideration. Therefore, we always assume that each row has some nonzero entry.

If every column has only one nonzero entry, then all the entries are 0s and 1s: each state goes to a unique
next state. If it also has the property that each row has some nonzero entry, then each row has one 1 and
there is a unique state that comes to eachi th state. Such a matrix is called apermutation matrix; it is not
“stochastic” so we assume some column has more than one nonzero entry.

Assume thatM is ann×n stochastic matrix. Assume that some material is spread out among then states,
with x(q)

j ≥ 0 the amount of material at thej th state at timeq andx(q)
= (x(0)

1 , . . . , x(q)
n )T be the column

vector of the amount of material at timeq in all the states. The material from thej th state at time 0 that is
returned to thei th state at time 1 is given bymi j x

(0)
j . The total amount at thei th state at time 1 is the sum of

the material from all the states, or

x(1)
i =

∑
j
mi j x

(0)
j .

By the preceding equation for each component,

x(1)
= Mx (0),

and, more generally,
x(q)

= Mx (q-1),

for the transition from the material at the state at timeq -1 to timeq. By induction,x(q)
= Mqx(0).

Notice that the total amount of material at timeq is the same as at timeq -1:∑
i
x(q)

i =

∑
i

(∑
j
mi j x

(q-1)

j

)
=

∑
j

(∑
i
mi j

)
x(q-1)

j

=

∑
j
x(q-1)

j .

(We use the fact that the column sums are 1.) By induction, the total amountX remains the same for all time

periods,
∑

j x(q)

j =
∑

j x(q-1)

j = · · · =
∑

i x(0)
i . Call this total amountX =

∑
i x(0)

i Then, p(q)

j = x(q)
j /X is

1
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the proportion of the material at thej th state at timeq. Letting

p(q)
= (p(q)

1 , . . . , p(q)
n )T

=
1

X
x(q)

be the vector of these proportions, we get a probability vector. Then,

Mp (q-1)
= M

x(q-1)

X

=
1

X
Mx (q-1)

=
1

X
x(q)

= p(q)
;

thus, the probability vectors also transform through multiplication by the matrixM .

Definition3. For a stochastic matrixM , the transformationp(q)
= Mp (q-1) on probability vectors is called a

(finite) Markov process.
For a given initial probability vectorp(0), the sequence of resulting iteratesp(q)

= Mqp(0) is called a
Markov chain.

Definition 4. A stochastic matrixM is calledregular provided that there is aq0 > 0 such thatMq0 has
all positive entries, i.e., it is possible to make a transition from any state to any other state with exactly
q0 transitions. It then follows thatMq has all positive entries forq ≥ q0. A regular stochastic matrix
automatically has the properties that each row has some nonzero entry and some column has more than one
nonzero entry.

Definition5. A stochastic matrix is calledirreducibleprovided that it is possible to get from each state to
any other state by making a finite number of transitions. More precisely, for any pair of states(i0, j0), there
areq ≥ 1 that can depend on(i0, j0) and indicesjk with 1 ≤ jk ≤ n for k = 1, . . . , q, such thatjq = i0 and
m jk jk-1 > 0 for k = 1, . . . , q. This means that for each pair of states(i0, j0), there is aq ≥ 1 such that the
(i0, j0)-entry ofMq is nonzero.

Since a stochastic matrixM always has column sum one,(1, . . . , 1)M = (
∑

i mi 1, . . . ,
∑

i min) =

(1, . . . , 1). Taking the transpose,M T (1, . . . , 1)T
= (1, . . . , 1)T , andM T always has(1, . . . , 1)T as an

eigenvector corresponding to the eigenvalue 1. SinceM T andM have the same eigenvalues,M always has
1 as an eigenvalue for some eigenvectorp∗,

p∗
= Mp ∗.

The following theorem gives conditions on the eigenvalues and eigenvectors for any stochastic matrix and
for a regular stochastic matrix.

Theorem 6 (Perron–Frobenius). (a) Assume thatM is a stochastic matrix with each row containing a
nonzero entry. Then,

(i) M has a probability vectorp∗ with all pi > 0 as an eigenvector for the eigenvalue1, and
(ii) all the eigenvaluesλ of M satisfy|λ| ≤ 1.

(b) Assume thatM is a regular stochastic matrix.
(i) The matrixM has1 as an eigenvalue of multiplicity one (i.e.,1 is a simple root of the characteristic

equation). An eigenvectorp∗ for the eigenvalue 1 can be chosen as a probability vector with all pi > 0.
(ii) All the other eigenvaluesλi have|λi | < 1. If vk is a eigenvector forλk, then

∑
i vk

i = 0.
(iii) If p is any probability vector with all pi > 0 and

∑
i pi = 1, thenp = p∗

+
∑n

j =2 ykvk for some
choice of the yk. Also,Mqp converges top∗ as q goes to infinity.

See [3] for a proof using iteration, [2] for a proof using norms of matrices, and Chapter XIII in Volume II
of [1] for more general results.
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We now give some examples.

Example7. Let

M =

0.5 0.2 0.3
0.3 0.8 0.3
0.2 0 0.4

 .

A direct calculations shows thatM2 has all positive entries, soM is regular. This matrix has eigenvalues 1,
0.5, and 0.2. (We do not give the characteristic polynomial, but do derive an eigenvector for each of these
eigenvalues.)

Forλ = 1,

M − I =

-0.5 0.2 0.3
0.3 -0.2 0.3
0.2 0 -0.6


∼

1 -0.4 -0.6
0 -0.08 0.48
0 0.08 -0.48

 ∼

1 0 -3
0 1 -6
0 0 0

 .

Thus,v1 = 3v3 andv2 = 6v3. Since we want 1= v1 + v2 + v3 = (3 + 6 + 1)v3 = 10v3, v3 = 0.1, and
p∗

= v1
= (0.3, 0.6, 0.1)T .

Forλ2 = 0.5,

M − 0.5 I =

 0 0.2 0.3
0.3 0.3 0.3
0.2 0 -0.1


∼

2 0 -1
0 2 3
1 1 1

 ∼

2 0 -1
0 2 3
0 1 1.5


∼

2 0 -1
0 2 3
0 0 0

 .

Thus, 2v1 = v3, 2v2 = -3v3, andv2
= (1, -3, 2)T is an eigenvector. Notice thatv1+v2+v3 = 1−3+2 = 0,

as Theorem 6 says must be the case.
Forλ3 = 0.2,

M − 0.2 I =

0.3 0.2 0.3
0.3 0.6 0.3
0.2 0 0.2


∼

1 0 1
3 6 3
3 2 3

 ∼

1 0 1
0 6 0
0 2 0


∼

1 0 1
0 1 0
0 0 0

 .

Thus,v1 = -v3, v2 = 0, andv3
= (1, 0, -1)T is an eigenvector. Again,v1 + v2 + v3 = 1 + 0 − 1 = 0.

If the original probability vector is given byp(0)
= (0.45, 0.45, 0.1)T , then

p(0)
= (0.3, 0.6, 0.1)T

+
1

20
(1, -3, 2)T

+
1

10
(1, 0, -1)T
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and

Mqp(0)
= (0.3, 0.6, 0.1)T

+
1

20

(
1

2

)q

(1, -3, 2)T
+

1

10

(
1

5

)q

(1, 0, -1)T ,

which converges to the probability vectorp∗
= (0.3, 0.6, 0.1)T asq goes to infinity. This convergence of

the iterates holds for any initial probability vectorp(0). See Theorem 6. �

Example8 (Complex Eigenvalues). The following stochastic matrix

M =

0.6 0.3 0.1
0.1 0.6 0.3
0.3 0.1 0.6

 .

illustrates the fact that an regular stochastic matrix can have complex eigenvalues. The eigenvalues are
λ = 1 and 0.4 ± i 0.1

√
3. Notice that|0.4 ± i 0.1

√
3| =

√
0.16+ 0.03 =

√
0.19 < 1. The eigenvectors

are(1/3, 1/3, 1/3)T and(−1, −1, 2)T
± i (

√
3, −

√
3, 0)T . �

Example9 (Not irreducible). An example of a stochastic matrix that is not irreducible is given by

M =


0.8 0.3 0 0
0.2 0.7 0 0
0 0 0.6 0.3
0 0 0.4 0.7

 ,

which has eigenvaluesλ = 1, 1, 0.5, and 0.3. Notice that it is possible to go between states 1 and 2, and it
is possible to go between and states 3 and 4, but it is not possible to go from the states 1 and 2 to the states 3
and 4. Since it is not irreducible, it is also not regular. The eigenvectors forλ = 1 arev1

= (0.6, 0.4, 0, 0)T ,
v2

= (0, 0, 3/7, 4/7)T , and any linear combinations ofv1 andv2. In particular, the average ofv1 andv2 is an
eigenvector that satisfies the conditions of the Perron-Frobenius Theorem,p∗

= (0.3, 0.2, 3/14, 4/14)T . �

Example10 (Not Regular). An example of a stochastic matrix that is irreducible, but not regular, is given
by

M =


0 0 0.8 0.3
0 0 0.2 0.7
1 0 0 0
0 1 0 0

 ,

which has eigenvaluesλ = 1, -1, and±
√

0.5. Here, it is possible to get from any state to any other state,
but starting at state one, the odd iterates are always at either states 3 or 4 and the even iterates are always
at either states 1 or 2. Thus, there is no one power for which all the transition probabilities are positive.
Therefore,M is not regular. Also, this matrix has another eigenvalue -1 with absolute value equal to one.
The probability eigenvector for the eigenvalue 1 is(0.3, 0.2, 0.3, 0.2)T . �
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