PORTFOLIO ANALYSIS

This treatment is based on [1].

We assume that there are \(A \) assets that our investor may buy at the beginning of a period and sell at the end of the period. Let \(x_j \) be the amount invested in the \(j^{th} \)-asset, and the vector \(x \) with components \(x_j \) is called a portfolio. The return depends on the financial climate; we assume there are \(S \) possible climates or states. Let \(r_{sj} \) be the return for one unit of money invested in the \(j^{th} \)-asset when the economy is in state \(s \), and let \(R = (r_{sj}) \) be the \(S \times A \) matrix that gives the change of value of the assets. Thus, if \(x_j \) amount of the \(j^{th} \)-asset is held at the beginning of the period and the economy is in state \(s \), then the value of the holding of the \(j^{th} \)-asset at the end of the period is \(r_{sj}x_j \). The sum \(\sum_j r_{sj}x_j \) gives the total value of the holdings after one period if the economy is in state \(s \), and this sum equals the \(s^{th} \)-component of \(Rx \).

Let \(b \) be the column vector such that all of the components \(b_j \) of \(b \) equal the same scalar value \(b > 0 \). If there is a solution \(x_0 \) to \(Rx = b \), then for holding \(x_0 \), the value of the outcome is \(b \), independent of the state \(s \). A holding of assets \(x_0 \) with \(Rx_0 = b \) is called riskless. Thus, there is a riskless portfolio iff the column vector \(I \) of all 1s is in the space spanned by the columns of \(R \).

A portfolio \(x \) is called duplicable provided that there is a holding \(w \neq x \) such that \(Rx = Rw \) and \(\sum_j x_j = \sum_j w_j \). This can be written as the single matrix equation

\[
\begin{bmatrix}
 r_{11} & \cdots & r_{1A} \\
 \vdots & \ddots & \vdots \\
 r_{S1} & \cdots & r_{SA} \\
 1 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_A
\end{bmatrix}
=
\begin{bmatrix}
 r_{11} & \cdots & r_{1A} \\
 \vdots & \ddots & \vdots \\
 r_{S1} & \cdots & r_{SA} \\
 1 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
 w_1 \\
 \vdots \\
 w_A
\end{bmatrix}.
\]

Let \(\tilde{R} \) be the matrix of the last equation that is formed by adding a row of 1s to the matrix \(R \). Thus, the system has a duplicable portfolio iff \(\tilde{Rx} = 0 \) has a nontrivial solution iff the rank of \(\tilde{R} \) is less than \(A \).

REFERENCES