CORRECTIONS TO MATH 313-1 NOTES

R. CLARK ROBINSON

page 2 (line 5) T^{2} has two similar "tents" on the interval $[0,1]$.
page 47 (line -1) $\hat{T}(\theta)=2(\pi-\theta)$ if $\frac{\pi}{2} \leq \theta \leq \pi$.
page 67 (line 19) $f\left(\mathbf{I}_{s_{j-1}}\right) \supset \mathbf{I}_{s_{j}}$ for $1 \leq j \leq n$.
page 67 (line 24-5) An allowable periodic sequence s_{0}, \ldots, s_{n} is called reducible provided $n=m p$ with $p>1$ and the sequence of symbols s_{0}, \ldots, s_{n-1} is just the sequence s_{0}, \ldots, s_{m-1} repeated p times.
page 68 (line 13) $\mathbf{J}_{n}=\mathbf{I}_{s_{n}}$,
page 74 (line 12) by $p \sqrt{2} / q$, where p and q are integers.
page 81-2 (There is a bad letter for the variable in the discussion of the Logistic map) The logistic function $G(y)=g_{4}(y)$, for $a=4$, also takes the interval $[0,1]$ to itself since $G(0.5)=1$. The results for the logistic map $G(y)$ are the same as the tent map. Let \mathbf{I}_{L} and \mathbf{I}_{R} be the same are for the tent map. Given a symbol sequence \mathbf{s}, define the intervals

$$
\mathbf{I}_{s_{0} \ldots s_{n}}^{G}=\left\{y: G^{j}(y) \in \mathbf{I}_{s_{j}} \text { for } 0 \leq j \leq n\right\}
$$

We showed in Proposition 2.6.4 that the map

$$
y=C(x)=\sin ^{2}\left(\frac{\pi x}{2}\right)=(1-\cos (\pi x)) / 2
$$

is a conjugacy from $T(x)$ to $G(y)$. Because there is a conjugacy C between T and G with $C([0,0.5])=[0,0.5]$ and $C([0.5,1])=[0.5,1]$,

$$
\begin{aligned}
\mathbf{I}_{s_{0} \ldots s_{n}}^{G} & =\bigcap_{j=0}^{n} G^{-j}\left(\mathbf{I}_{s_{j}}^{G}\right) \\
& =\bigcap_{j=0}^{n} C \circ T^{-j} \circ C^{-1}\left(\mathbf{I}_{s_{j}}^{G}\right) \\
& =C\left(\bigcap_{j=0}^{n} T^{-j}\left(\mathbf{I}_{s_{j}}^{T}\right)\right) \\
& =C\left(\mathbf{I}_{s_{0} \ldots s_{n}}^{T}\right),
\end{aligned}
$$

where $\mathbf{I}_{s_{0} \ldots s_{n}}^{T}$ is the interval for the tent map. There are bounds on the derivative of the conjugacy equation,

$$
\begin{aligned}
C^{\prime}(x) & =\frac{\pi}{2} \sin (\pi x) \\
\left|C^{\prime}(x)\right| & \leq \frac{\pi}{2}
\end{aligned}
$$

[^0]Let x_{0} and x_{1} be the end points of the interval $\mathbf{I}_{s_{0} \ldots s_{n}}^{T}$, so $\left|x_{1}-x_{0}\right|=2^{-n-1}$, and $y_{0}=C\left(x_{0}\right)$ and $y_{1}=C\left(x_{1}\right)$ be the corresponding end points of the interval $\mathbf{I}_{s_{0} \ldots s_{n}}^{G}$. By the Mean Value Theorem, there is a point x_{2} between x_{0} and x_{1}, such that

$$
\begin{aligned}
y_{1}-y_{0} & =C\left(x_{1}\right)-C\left(x_{0}\right) \\
& =C^{\prime}\left(x_{2}\right)\left(x_{1}-x_{0}\right) \\
\left|y_{1}-y_{0}\right| & =\left|C^{\prime}\left(x_{2}\right)\right|\left|x_{1}-x_{0}\right| \\
& \leq \frac{\pi}{2}\left|x_{1}-x_{0}\right| \\
& =\pi 2^{-n-2} .
\end{aligned}
$$

Since these intervals are going to zero in length as n goes to infinity,

$$
\bigcap_{j=0}^{\infty} G^{-j}\left(\mathbf{I}_{s_{j}}\right)
$$

is a single point which we define as $k(\mathbf{s})$.
page 95 (line 2)

$$
\Lambda_{g}=\bigcap_{n \geq 0} g^{-n}([0,1])
$$

page 97 (line 1) The length of \mathbf{I}_{L} is c and the length of \mathbf{I}_{R} is $1-c$, so
page 97 (Theorem 3.5.4a) where L is the maximum of $p_{1}-p_{0}, \ldots p_{k}-p_{k-1}$.
page 97 (Theorem 3.5.4c) If $k(\mathbf{s})$ is neither periodic nor eventually periodic ...
page 106 (line 14) $R_{22.2,1}^{3}(0.05) \leq 0.05$
page 106 (line 18) the interval from 0 up to 8.1
page109 (line 3) Since $f^{2^{q-1}}\left(x_{q}\right)=g\left(x_{q}\right) \neq x_{q}, \ldots$
page 114 (3.3.1) Let $f(x)=3 x(\bmod 1)$ be the tripling map.
a. Prove that if two distinct points x_{0} and x_{0}^{\prime} are within a distance $1 / 6$, then their iterates are at least three times as far apart.
b. Find a pair of point whose distance is not tripled by the map.
c. Show that f has sensitive dependence on initial conditions.
page 114 (3.3.2) Let p be a fixed point for f such that $\left|f^{\prime}(p)\right|>1$. Prove that f has sensitive dependence on initial conditions at p.
page 125 (Example 4.2.15) The number 0.08 should be 0.8 . This mistake occurs several (at least 4) places in this example.
page 126 (line 1) Then, since $f^{2}([-0.3125,0)) \supset(0,0.2]$, A must contain the entire interval $(0,0.2]$.
page 146 (line -9) We show that we can use this $r \ldots$
page 147 (line 6-10) Taking the second iterate,

$$
\ell\left(\mathbf{J}_{k+2}\right) \geq \begin{cases}\lambda^{2} \ell\left(\mathbf{J}_{k}\right) & \text { if } c \notin f\left(\mathbf{J}_{k}\right) \cup f\left(\mathbf{J}_{k+1}\right) \\ \frac{\lambda^{2}}{2} \ell\left(\mathbf{J}_{k}\right) & \text { if } c \notin f\left(\mathbf{J}_{k}\right) \cap f\left(\mathbf{J}_{k+1}\right) \\ \frac{\lambda^{2}}{4} \ell\left(\mathbf{J}_{k}\right) & \text { if } c \in f\left(\mathbf{J}_{k}\right) \cap f\left(\mathbf{J}_{k+1}\right) .\end{cases}
$$

The first case assumes that c is in neither $f\left(\mathbf{J}_{k}\right)$ nor $f\left(\mathbf{J}_{k+1}\right)$; the second case assumes that c is not in both $f\left(\mathbf{J}_{k}\right)$ and $f\left(\mathbf{J}_{k+1}\right)$; the last case assumes that c is in both $f\left(\mathbf{J}_{k}\right)$ and $f\left(\mathbf{J}_{k+1}\right)$, i.e., in two successive iterates. Since
$\lambda>\sqrt{2}, \lambda^{2} / 2>1$, and the length of every second iterate grows until two successive iterates $f\left(\mathbf{J}_{n-4}\right)$ and $f\left(\mathbf{J}_{n-3}\right)$ contain c.

By assumption (ii) on the function, $f\left(c^{-}\right)=b$ and $f\left(c^{+}\right)=a, f\left(\mathbf{J}_{n-3}\right)$ contains either the interval $(a, c]$ or $[c, b)$.

[^0]: Date: March 3, 2003.

