Math 313-1

Final March 2003
No books, no notes. Calculators are allowed.
Show all your work in your bluebook.
Show all your work in your bluebook. Start each problem on a new page.

1. (30 Points) Let

$$
f(x)=-\frac{3}{2} x^{2}+\frac{5}{2} x+1
$$

Notice that $f(0)=1, f(1)=2$, and $f(2)=0$ is a period- 3 orbit.
a. Is the orbit $\mathcal{O}_{f}^{+}(0)$ attracting or repelling?
b. What is the Lyapunov exponent of $x_{0}=0$?
2. (50 Points) Let

$$
f(x)=x^{3}-\frac{9}{16} x
$$

Notice that

$$
f^{\prime}(x)=3 x^{2}-\frac{9}{16} \geq-\frac{9}{16}>-1
$$

a. Find the fixed points and determine their stability type as attracting or repelling.
b. Find the critical points, where $f^{\prime}(x)=0$. Call the critical points $x_{c}^{ \pm}$.
c. Show that for x in $\left[x_{c}^{-}, x_{c}^{+}\right],\left|f^{\prime}(x)\right|<1$, so by the Mean Value Theorem

$$
|f(x)-f(0)|<|x-0| .
$$

(If you do not see how to show this, you can still use this result in the next part of the problem.)
d. What is the basin of attraction of 0 ?
e. Show the Schwarzian derivative of f is negative. Note:

$$
S_{f}(x)=\frac{f^{\prime \prime \prime}(x) f^{\prime}(x)-\frac{3}{2} f^{\prime \prime}(x)^{2}}{f^{\prime}(x)^{2}}
$$

3. (20 Points) Let

$$
f(y)=1-\frac{3}{4} y^{2} \quad \text { and } \quad g(x)=3 x(1-x) .
$$

Show that $y=C(x)=4 x-2$ is a conjugacy between f and g. Notice, that x is the variable for g and y is the variable for f.
4. (30 Points) Assume f is a continuous map on the real line which has a period-6 orbit $f(1)=$ $5, f(2)=6, f(3)=4, f(4)=1, f(5)=2$, and $f(6)=3$. Label the interval between these points with symbols a through e by $\mathbf{I}_{a}=[1,2], \mathbf{I}_{b}=[2,3]$, etc.
a. Give the transition graph for these intervals.
b. What periods are forced to exist by this transition graph? Notice that most orbits alternate between the intervals $[1,3]$ and $[4,6]$.
5. (20 Points) Let f be the map

$$
f(x)=\frac{4}{\pi} \arctan (x)
$$

Note that $f(0)=0, f(1)=1$, and $f(-1)=-1$. Give all the attracting sets for f. Which of these sets are attractors? Why are there no chaotic attractors? Remember that

$$
f^{\prime}(x)=\frac{4}{\pi\left(1+x^{2}\right)}
$$

6. (50 Points) Let

$$
f(x)= \begin{cases}3+\frac{3}{2}(x-1) & \text { for } 0 \leq x \leq 1 \\ 3-2(x-1) & \text { for } 1 \leq x \leq 2 \\ 1+\left(\frac{1+\sqrt{5}}{2}\right)(x-2) & \text { for } 2 \leq x\end{cases}
$$

a. Show that $[1,3]$ has a trapping region.
b. Show that f has a Markov partition on $[1,3]$. (Don't worry about the image of points outside $[1,3]$ like $x=0$ or $x=4$.
c. Is f topologically transitive on $[1,3]$? If so, why?
d. Does f have a chaotic attractor? If so, why?
e. What estimate can you give for the Lyapunov exponents of orbits in $[1,3]$ which do not pass through the points 1 and 2 where the derivative does not exist? Give an estimate like $A \leq \ell\left(x_{0} ; f\right) \leq B$ where A and B are specific values.

