No books or notes allowed. Calculators are allowed.

1. Consider the function

$$
f(x)= \begin{cases}3 x & \text { for } 0 \leq x \leq \frac{1}{3} \\ -3 x+2 & \text { for } \frac{1}{3} \leq x \leq \frac{2}{3} \\ 3 x-2 & \text { for } \frac{2}{3} \leq x \leq 1\end{cases}
$$

a. (20 Points) This function has 3^{n} points which are fixed by f^{n}, \#Fix $\left(f^{n}\right)=3^{n}$. Make a table for $1 \leq n \leq 6$ showing the following: (i) n, (ii) number of fixed points of f^{n}, \#Fix $\left(f^{n}\right)$, (iii) how many of these points fixed by f^{n} have a lower period, (iv) number of points of period $n, \# \operatorname{Per}(n)$, and (v) number of orbits of period n.
b. (10 Points) Determine whether $\frac{1}{6}$ and $\frac{1}{4}$ are periodic or eventually periodic.
2. (30 Points) Let

$$
f(x)=x^{3}+\frac{5}{9} x
$$

a. Find the fixed points and classify each of them as attracting, repelling, or neither.
b. Use graphical method of iteration to determine the basin of attraction of all the attracting fixed points.
(over)
3. (15 Points) Let

$$
f(x)=x^{3}-\frac{5}{4} x
$$

The fixed points are 0 and $\pm \frac{3}{2}$. Determine the stability of the period- 2 orbit $\left\{\frac{1}{2},-\frac{1}{2}\right\}$. Note: The period-2 points satisfy $f(x)=-x$.
4. (25 Points) Let

$$
f(x)=x^{3}-\frac{9}{16} x
$$

a. Show the Schwarzian derivative of f is negative. Note:

$$
S_{f}(x)=\frac{f^{\prime \prime \prime}(x) f^{\prime}(x)-\frac{3}{2} f^{\prime \prime}(x)^{2}}{f^{\prime}(x)^{2}}
$$

b. Find the critical points.
c. The fixed points are 0 and $\pm \frac{5}{4}$, where 0 is attracting and $\pm \frac{5}{4}$ are repelling. The basin of attraction of 0 is contained between the other two fixed points,

$$
\mathcal{B}(0) \subset\left(-\frac{5}{4}, \frac{5}{4}\right)
$$

(These are facts you may use without proving.) Explain why the critical points must be in the basin of attraction of 0 .

