
Math 313-2 Test May 6, 2003 R.C. Robinson

No books, no notes, but calculators are allowed.
Show all your work in your bluebook. Start each problem on a new page.

1. (20 Points) Consider the map
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a. Draw the graph of f . Also, explain why f is an expanding map which has a
Markov partition.

b. Give the transition matrix M =

(
tijLj

Lisi

)
on masses of the subintervals, and find

the invariant masses m∗.
c. Find the densities ρ∗j , which correspond to the invariant masses m∗.

2. (20 Points) Consider the linear map(
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) (
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)
from the plane R2 to itself. Sketch the phase portrait, indicating the stable and
unstable manifolds. Also, indicate the behavior of other typical points.

3. (20 Points) Let
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.

Find the fixed points and classify them as source, saddle, sink, or none of these.

4. (20 Points) Consider the map given by
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Define the rectangles R0 = [0, 1]× [0, 0.25] and R1 = [0, 1]× [0.75, 1].
a. Show that {R0, R1 } is a Markov partition. Hint: 0 ≤ 1

8
sin(2π y) ≤ 1

8
for

0 ≤ y ≤ 0.25, and 0 ≥ −1
8

sin(2π (1− y)) ≥ −1
8

for 0.75 ≤ y ≤ 1.
b. What is the index of the map from R0 to itself? From R1 to itself?

(over)



5. (20 Points) Consider the map given by

F
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)
=
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and − 0.25 ≤ x ≤ 1.25.

a. What are the two fixed points?
b. What is the “local” stable and unstable manifolds of the fixed points? Hint: For

the “local” stable manifolds, consider the part −0.5 ≤ x ≤ 1.5 before it leave this
region. For “local” unstable manifolds, consider the part −0.5 ≤ y ≤ 1.5.

c. What is the orbit of period-2?


