R.C. Robinson

No books, no notes, but calculators are allowed.
Show all your work in your bluebook. Start each problem on a new page.

1. (20 Points) Consider the map

$$
f(x)= \begin{cases}\frac{3}{2} x+\frac{2}{5} & \text { for } 0 \leq x \leq \frac{2}{5} \\ -\frac{5}{2} x+2 & \text { for } \frac{2}{5} \leq x \leq \frac{4}{5} \\ 2 x-\frac{8}{5} & \text { for } \frac{4}{5} \leq x \leq 1\end{cases}
$$

a. Draw the graph of f. Also, explain why f is an expanding map which has a Markov partition.
b. Give the transition matrix $\mathbf{M}=\left(\frac{t_{i j} L_{j}}{L_{i} s_{i}}\right)$ on masses of the subintervals, and find the invariant masses \mathbf{m}^{*}.
c. Find the densities ρ_{j}^{*}, which correspond to the invariant masses \mathbf{m}^{*}.
2. (20 Points) Consider the linear map

$$
\left(\begin{array}{ll}
2 & 0 \\
1 & \frac{1}{2}
\end{array}\right)\binom{x}{y}
$$

from the plane \mathbb{R}^{2} to itself. Sketch the phase portrait, indicating the stable and unstable manifolds. Also, indicate the behavior of other typical points.
3. (20 Points) Let

$$
\mathbf{F}\binom{x}{y}=\binom{2 x y+y}{-x+3 y}
$$

Find the fixed points and classify them as source, saddle, sink, or none of these.
4. (20 Points) Consider the map given by

$$
\mathbf{F}\binom{x}{y}=\left\{\begin{array}{cc}
\binom{\frac{1}{8} x+\frac{1}{8} \sin (2 \pi y)+\frac{1}{8}}{8 y-\frac{1}{2}} & \text { for } y<\frac{1}{2} \\
\binom{-\frac{1}{8} x+\frac{7}{8}-\frac{1}{8} \sin (2 \pi(1-y))}{-8 y+\frac{15}{2}} & \text { for } \frac{1}{2} \leq y
\end{array}\right.
$$

Define the rectangles $\mathbf{R}_{0}=[0,1] \times[0,0.25]$ and $\mathbf{R}_{1}=[0,1] \times[0.75,1]$.
a. Show that $\left\{\mathbf{R}_{0}, \mathbf{R}_{1}\right\}$ is a Markov partition. Hint: $0 \leq \frac{1}{8} \sin (2 \pi y) \leq \frac{1}{8}$ for $0 \leq y \leq 0.25$, and $0 \geq-\frac{1}{8} \sin (2 \pi(1-y)) \geq-\frac{1}{8}$ for $0.75 \leq y \leq 1$.
b. What is the index of the map from \mathbf{R}_{0} to itself? From \mathbf{R}_{1} to itself?
(over)
5. (20 Points) Consider the map given by

$$
\mathbf{F}\binom{x}{y}= \begin{cases}\binom{\frac{1}{6} x}{4 y} & \text { for }-\frac{1}{3}<y<\frac{1}{3} \text { and }-0.25 \leq x \leq 1.25 \\ \binom{-\frac{1}{6} x+1}{-4 y+3} & \text { for } \frac{2}{3} \leq y<\frac{4}{3} \text { and }-0.25 \leq x \leq 1.25\end{cases}
$$

a. What are the two fixed points?
b. What is the "local" stable and unstable manifolds of the fixed points? Hint: For the "local" stable manifolds, consider the part $-0.5 \leq x \leq 1.5$ before it leave this region. For "local" unstable manifolds, consider the part $-0.5 \leq y \leq 1.5$.
c. What is the orbit of period-2?

