7.3: The core of a bargaining game

Clearly, \(v\{1\} \) and \(v\{2\} \) are closed subsets of \(\mathbb{R}^2 \). To see that \(v\{1,2\} \) is closed, assume that a sequence \(\{ (x_n, y_n) \} \) of \(v\{1,2\} \) satisfies \((x_n, y_n) \to (x, y) \) in \(\mathbb{R}^2 \). Then \(x_n < 4 \) for each \(n \) and so \(x = \lim_{n \to \infty} x_n \leq 4 \). If \(x = 4 \), then from \(y_n \leq \frac{y_n}{x_n - 1} \), it follows that \(y = \lim_{n \to \infty} y_n \leq \lim_{n \to \infty} \frac{y_n}{x_n - 1} = -\infty \), which is impossible. Hence, \(x < 4 \) and \(y \leq \frac{y_n}{x_n - 1} \) and so \((x, y) \in v\{1,2\} \). Thus, the set \(v\{1,2\} \) is closed.

(ii) Each \(v(C) \) is comprehensive, i.e., \(x \leq y \) and \(y \in v(C) \) imply \(x \in v(C) \).

Clearly, \(v\{1\} \) and \(v\{2\} \) are comprehensive. Now let us verify that the set \(v\{1,2\} \) is also comprehensive from below. To see this, assume \((x_1, y_1) \leq (x_2, y_2) \) with \((x_2, y_2) \in v\{1,2\} \). This says that \(x_1 \leq x_2 < 4 \) and \(y_1 \leq y_2 \leq \frac{y_2}{x_2 - 1} \). Since the function \(y = \frac{y_2}{x_2 - 4} = 1 + \frac{1}{x_2 - 4} \) decreases in the interval \((-\infty, 4) \), we get \(y_1 \leq y_2 \leq \frac{y_2}{x_2 - 4} \leq \frac{y_2}{x_2 - 4} \), proving that \((x_1, y_1) \in v\{1,2\} \). Therefore, \(v\{1,2\} \) is comprehensive too.

(iii) If \(x \in v(C) \) and \(y \in \mathbb{R}^2 \) satisfies \(x_i = y_i \) for each \(i \in C \), then \(y \in v(C) \).

This is obvious.

(iv) Each \(v(C) \) is bounded from above relative to \(\mathbb{R}^C \), i.e., for each \(C \) there is some \(M_C \) satisfying \(x_i \leq M_C \) for all \(i \in C \) and all \(x \in v(C) \).

Indeed, note that if \(x \in v(C) \), then \(x_i \leq 4 \) for each \(i \in C \).

(v) The bargaining game is balanced.

Note that there is only one balanced family that does not contain the grand coalition \(N = \{1,2\} \). It is the family of sets \(\{ (1), \{2\} \} \). Now we claim that \(v\{1\} \cap v\{2\} \subseteq v\{1,2\} \).

Indeed, if \((x, y) \in v\{1\} \cap v\{2\} \), then \(x \leq 1 \) and \(y \leq \frac{1}{2} \). This implies \(y \leq \frac{1}{2} = \frac{y}{x} < \frac{y}{x - 4} \), which shows that the vector \((x, y) \) belongs to \(v\{1,2\} \).

Having now verified these five conditions, we may appeal to Scarf's Theorem 7.21 to guarantee that the 2-person game \(v \) has a non-empty core.

![Figure 7.8](image_url)