Chapter 7: Bargaining

(b) Figure 7.8 illustrates the geometry of the situation. Notice that every vector \((x, y) \in v(\{1, 2\})\) with \(x < 1\) can be blocked by the coalition \([1]\). Also, every vector \((x, y) \in v(\{1, 2\})\) with \(y < \frac{1}{2}\) can be blocked by the coalition \([2]\). Finally, every vector \((x, y) \in v(\{1, 2\})\) satisfying \(1 \leq x \leq 2\) and \(y < \frac{x-2}{x-1}\) can be blocked by the coalition \([1, 2]\). Thus, the only vectors that cannot be blocked by any coalition are the vectors of the form \((x, \frac{x-2}{x-1})\) with \(1 \leq x \leq 2\). In other words, the set of all core utility allocations is \(\{(x, \frac{x-2}{x-1}): 1 \leq x \leq 2\}\).

Problem 7.3.3. Consider a bargaining game with three players, i.e., \(N = \{1, 2, 3\}\). Show that the family of coalitions \(C = \{\{1\}, \{1, 2\}, \{1, 3\}\}\) is not balanced.

Solution: Assume by way of contradiction that there exist non-negative weights \(w_1, w_2,\) and \(w_3\) satisfying

\[
w_1\chi_{\{1\}} + w_2\chi_{\{1, 2\}} + w_3\chi_{\{1, 3\}} = \chi_{\{1, 2, 3\}}.
\]

This is equivalent to

\[
w_1 + w_2 + w_3 = 1, \quad w_2 = 1, \quad \text{and} \quad w_3 = 1.
\]

However, it is easy to see that there are no non-negative weights \(w_1, w_2,\) and \(w_3\) satisfying the above system. Hence, \(C\) is not a balanced family.

Problem 7.3.4. Show that if \(C\) is a balanced collection of coalitions, then every player must belong to at least one coalition of \(C\).

Solution: If \(C\) is a balanced collection, then there exist weights \(\{w_C: C \in C\}\) such that

\[
\sum_{C \in C_i} w_C = 1,
\]

where \(C_i = \{C \in C: i \in C\}\). In particular, for each \(i\) we have \(C_i \neq \emptyset\). This implies that for each player \(i\) we have \(i \in C\) for at least one coalition \(C \in C\).

Problem 7.3.5. Prove Theorem 7.22. That is, show that in a side-payment n-person bargaining game \(v\), a vector \((u_1, \ldots, u_n) \in v(N)\) belongs to the core if and only if \(\sum_{i \in C} u_i \geq v(C)\) holds for each coalition \(C\).

Solution: Let \(v\) be an \(n\)-player side-payment bargaining game and let \((u_1, \ldots, u_n)\) belong to \(v(N)\), i.e., \(\sum_{i=1}^{n} u_i \leq v(N)\).

Assume first that \((u_1, \ldots, u_n)\) belongs to the core. To establish our claim, assume by way of contradiction that there exist a coalition \(C\) with \(k = |C| \geq 1\) members satisfying \(\sum_{i \in C} u_i < v(C)\). Let \(w = v(C) - \sum_{i \in C} u_i > 0\), and define \(x_i = u_i\) if \(i \notin C\) and \(x_i = u_i + \frac{1}{2}w\) if \(i \in C\). Then \((x_1, \ldots, x_n)\) satisfies \(\sum_{i \in C} x_i = v(C)\) (i.e., \((x_1, \ldots, x_n) \in v(C)\)) and \(x_i = u_i + \frac{1}{2}w > u_i\) for each \(i \in C\). Therefore, the coalition \(C\) blocks \((u_1, \ldots, u_n)\), which is a contradiction. Hence, \(\sum_{i \in C} u_i \geq v(C)\) holds true for each coalition \(C\).