1. (16 Points) For a collection of lotteries, there are three possible outcomes, a_1, a_2, and a_3. The payoff function satisfies $u(a_1) = 0$, $u(a_2) = v$, and $u(a_3) = 10$. A lottery (p_1, p_2, p_3) indicates a lottery in which the probability of getting outcome a_i is p_i. The decision maker prefers the lottery $(0.1, 0.5, 0.4)$ to $(0.3, 0.7, 0)$ to $(0.2, 0.2, 0.6)$. What choice if any for the value of v make these preferences induced by the Bernoulli payoff function induced from u?

Answer:
For the preferences on the lotteries to be true, we need $0.5v + 4 > 7 > 0.2v + 6$. The inequalities imply the following:

$$0.5v > 3,$$
$$v > 6,$$
and
$$1 > 0.2v,$$
$$5 > v.$$

These two inequalities are not possible at the same time, so preferences are not determined by a Bernoulli payoff function.

2. (17 Points) Assume that two countries that impose a tariff on a product of $x \geq 0$ by country one and $y \geq 0$ by country two, and that the payoffs are $u_1(x, y) = 2000 + 60x + xy - x^2 - 90y$ and $u_2(x, y) = 2000 + 60y + xy - y^2 - 90x$. Find the Nash equilibrium.

Answer:

$$\frac{\partial u_1}{\partial x} = 60 + y - 2x = 0,$$
$$\frac{\partial u_1}{\partial y} = 60 + x - 2y = 0.$$

Since $\frac{\partial^2 u_1}{\partial x^2} = -2 < 0$ and $\frac{\partial^2 u_1}{\partial y^2} = -2 < 0$ these are maximum. Adding twice the second equation to the first gives $0 = 180 - 3y$, or $y = 60$. Substituting in gives $x = -60 + 2y = 120 - 60 = 60$. This is the Nash equilibrium, $(x, y) = (60, 60)$.
3. (17 Points) In one form of the game of attrition, the payoff functions of two players are given by

\[
 u_1(t_1, t_2) = \begin{cases}
 0 & \text{if } t_1 < t_2 \\
 \frac{1}{2} (v_1 - t_2) & \text{if } t_1 = t_2 \\
 v_1 - t_2 & \text{if } t_1 > t_2
 \end{cases}
 \quad \text{and} \quad
 u_2(t_1, t_2) = \begin{cases}
 0 & \text{if } t_2 < t_1 \\
 \frac{1}{2} (v_2 - t_1) & \text{if } t_2 = t_1 \\
 v_2 - t_1 & \text{if } t_2 > t_1,
 \end{cases}
\]

where \(t_1 \geq 0 \) is the time player one waits and \(t_2 \geq 0 \) is the time player two waits. Assume that \(0 < v_2 < v_1 \). Give the best response function of each player, \(B_1(t_2) \) and \(B_2(t_1) \).

Answer:

The best response functions are as follows:

\[
 B_1(t_2) = \begin{cases}
 t_1 > t_2 & \text{if } t_2 < v_1 \\
 t_1 > t_2 & \text{if } t_2 = v_1 \\
 t_1 < t_2 & \text{if } t_2 > v_1
 \end{cases}
\]

\[
 B_2(t_1) = \begin{cases}
 t_2 > t_1 & \text{if } t_1 < v_2 \\
 t_2 > t_1 & \text{if } t_1 = v_2 \\
 t_2 < t_1 & \text{if } t_1 > v_2.
 \end{cases}
\]

4. (25 Points) Consider the bi-matrix game given by

\[
 \begin{pmatrix}
 (8, 1) & (0, 1) & (2, 3) \\
 (2, 1) & (4, 4) & (0, 0) \\
 (1, 3) & (3, 0) & (3, 2)
 \end{pmatrix}
\]

a. Are there any pure strategy Nash equilibria? Explain by giving the best response in pure strategies of each player to the pure strategies of the other player.

b. Consider mixed strategies, where player one (who chooses the row) has a strategy \((p_1, p_2, p_3) \) and player two (who chooses the column) has a strategy \((q_1, q_2, q_3) \).

(i) For \(p_2 = 0 = q_2 \) and \(1 \leq i \leq 3 \), find the expected payoffs \(E_1(r_i, (q, 0, 1 - q)) \) for rows \(r_i \) and \(E_2((p, 0, 1 - p), c_j) \) for columns \(c_j \).

(ii) Find a mixed strategy Nash equilibrium with \(p_2 = 0 = q_2 \). Indicate why it is a Nash equilibrium.

Answer:

(a) \(B_1(c_1) = r_1, B_1(c_2) = r_2, B_1(c_3) = r_3, B_2(r_1) = c_3, B_2(r_2) = c_2, B_2(r_3) = c_1. \) The only choices that are in the best response for the other player are \((r_2, c_2) \), so this is the only Nash equilibrium in pure strategies.

(b) \(E_1(r_1, (q, 0, 1 - q)) = 8q + 2(1 - q) = 6q + 2, E_1(r_2, (q, 0, 1 - q)) = 2q, \)
\(E_1(r_3, (q, 0, 1 - q)) = q + 3(1 - q) = 3 - 2q, E_2((p, 0, 1 - p), c_1) = p + 3(1 - p) = 3 - 2p, \)
\(E_2((p, 0, 1 - p), c_2) = p, E_2((p, 0, 1 - p), c_3) = 3p + 2(1 - p) = 2 + p. \)

If \(E_1(r_1, (q, 0, 1 - q)) = 6q + 2 = 3 - 2q = E_1(r_3, (q, 0, 1 - q)), \) then \(8q = 1, q = \frac{1}{8} \)
and \(1 - q = \frac{7}{8}. \) For these values \(E_1(r_1, (q, 0, 1 - q)) > E_1(r_2, (q, 0, 1 - q)) \) so \(p_2 = 0. \)

If \(E_2((p, 0, 1 - p), c_1) = 3 - 2p = 2 + p = E_2((p, 0, 1 - p), c_3), \) then \(3p = 1 \) or \(p = \frac{1}{3} \) and \(1 - p = \frac{2}{3}. \) For these values, \(E_2((p, 0, 1 - p), c_1) > E_2((p, 0, 1 - p), c_2) \)
so \(q_2 = 0. \) This shows that \(p = \left(\frac{1}{3}, 0, \frac{2}{3} \right) \) and \(q = \left(\frac{1}{8}, 0, \frac{7}{8} \right) \) is a Nash equilibrium.
5. (25 Points) For an evolutionary game, members of a single population are randomly matched in pairs and have the following payoff matrix of playing row r_i against column c_j,

$$ A = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}. $$

a. Find all the symmetric Nash equilibria.
b. Check whether each Nash equilibrium is an ESS.

Answer:
For $p = (p, 1 - p)$, $E(e^1, p) = 2(1 - p)$ and $E(e^2, p) = p$. These are equal for $2 - 2p = p$, $2 = 3p$, or $p = 2/3$. The best response is

$$ B(p) = \begin{cases} 1 & \text{if } p < 2/3 \\ 0, 1 & \text{if } p = 2/3 \\ 0 & \text{if } p > 2/3. \end{cases} $$

The only p for which $p \in B(p)$ is $\hat{p} = 2/3$. This is the only symmetric Nash equilibrium.

For $q = (q, 1 - q)$, $q \cdot Aq = 3q(1 - q)$ and $\hat{p} \cdot Aq = \frac{4}{3} - q$. Is

$$ \frac{4}{3} - q > 3q - 3q^2 $$

$$ 3q^2 - 4q + \frac{4}{3} > 0 $$

$$ \frac{1}{3}(9q^2 - 12q + 4) > 0 $$

$$ (3q - 2)^2 > 0. $$

This is true for $q \neq 2/3$. This checks that \hat{p} is an ESS.