There are various other ways in which the Nash equilibrium concept has been motivated with game theory. These motivations are parables in the sense that we will only other a verbal description of each one. Some of these motivations have been precisely worked out in mathematical models; some others have turned out to be simple and intuitive verbally but virtually impossible to analyze formally. In either case, the parables are worth telling because Nash equilibrium will be the most widely used solution concept in this (and every other) game theory text. Hopefully, these parable will convince you even more about the reasonableness of this solution concept.

Play Prescription
One can think of a Nash Equilibrium s^* as a prescription for play. If this strategy vector is proposed to the players, then it is a stable prescription in the sense that no one has an incentive to play otherwise. By playing an alternative strategy, a player would simply lower her payoffs, if she thinks the others are going to follow their part of the prescription.

Rational Introspection
A related motivation is rational introspection: each player could ask himself what he expects will be the outcome to a game. Some candidate outcomes will appear unreasonable in that there are players who could do better than they are doing; that is, there will be players not playing a best response. The only time no player appears to be making a mistake is when each is playing a best response, that is, when we are at a Nash equilibrium.

Focal Point
Another motivation is the idea that a Nash equilibrium forms a focal point for the players in a game. The intuitive idea of a focal point was first advanced by Thomas Schelling in 1960 in his book *The Strategy of Conflict*. It refers to a strategy vector that stands out from the other strategy vectors because of some distinguishing characteristics. A Nash equilibrium strategy vector is a focal point because it has the distinguishing characteristic that each player plays a best response under that strategy vector.

Preplay Communication
How would the players in a game find their way to a Nash equilibrium? One answer that has been proposed is that they could coordinate on a Nash equilibrium by way of preplay communication; that is, they could coordinate by meeting before the game is actually played and discussing their options. It is not credible for the players to agree on anything that is not a Nash equilibrium because at least one player would cheat against such an agreement.

Trial and Error
If players started by playing a strategy vector that is not a Nash equilibrium, somebody would discover that she could do better. If she changes her strategy choice, and we are still not in a Nash equilibrium, somebody else might want to change his strategy. This process of trial and error would go on till such time as we reach a Nash equilibrium – and then nobody has the incentive to change her strategy choice. This reasoning is persuasive but not entirely correct because there is no guarantee that this process would ever lead to a stable situation. Moreover, it is easy to construct examples in which this process could leave us trapped in cycles in which players keep changing their strategies in search of higher payoffs but nowhere is everyone satisfies simultaneously.

References