No books, no notes. You may use hand calculators

1. (35 Points) Consider the set

$$
S=\{0\} \cup\left\{\frac{1}{k}: 1 \leq k<\infty, k \text { is an integer }\right\} .
$$

Derive the box dimension of S.
2. (35 Points) Consider the iterated function system with the three maps on \mathbb{R}^{2}

$$
\begin{aligned}
& \mathbf{F}_{1}(\mathbf{x})=0.2 \mathbf{x} \\
& \mathbf{F}_{2}(\mathbf{x})=0.2 \mathbf{x}+(0.8,0) \\
& \mathbf{F}_{3}(\mathbf{x})=0.2 \mathbf{x}+(0,0.8) .
\end{aligned}
$$

(a) Describe the attractor for the iterated function system.
(b) How many boxes of size $(0.2)^{3}$ are needed to cover the attractor?
(c) What is the box dimension of the attractor for the iterated function system? (Derive the answer, don't just write down a number.)
3. (40 Points) Consider the baker type map given by

$$
\mathbf{F}\binom{x}{y}=\left\{\begin{array}{cl}
\binom{\frac{1}{4} x+\frac{1}{8} \sin (2 \pi y)}{2 y} & \text { for } y<\frac{1}{2} \\
\left(\frac{1}{4} x+\frac{3}{4}+\frac{1}{8} \sin (2 \pi y)\right. \\
2 y-1
\end{array}\right) \quad \text { for } \frac{1}{2} \leq y \leq 1 .
$$

(a) For a point $\mathbf{p}_{0}=\left(x_{0}, y_{0}\right)$ with $0 \leq x_{0} \leq 1$ and $0 \leq y_{0} \leq 1$, and the vector $\mathbf{v}=(1,0)$, what is the Lyapunov exponent $h\left(\mathbf{p}_{0}, \mathbf{v} ; \mathbf{F}\right)$?
(b) What is the other Lyapunov exponent? Hint: You may use the following fact. For a map in two dimensions for which $\operatorname{det}\left(D \mathbf{F}_{\mathbf{p}}\right)=\Delta$ is a constant, the sum of the Lyapunov exponents satisfies

$$
\ln (\Delta)=h_{1}(\mathbf{p} ; \mathbf{F})+h_{2}(\mathbf{p} ; \mathbf{F})
$$

(c) What is the Lyapunov dimension of the attracting set for the map \mathbf{F} ?
4. (30 Points) Consider the baker type map given by

$$
\mathbf{F}\binom{x}{y}=\left\{\begin{array}{cc}
\binom{\frac{1}{4} x+\frac{1}{8} \sin (4 \pi y)}{4 y} & \text { for } y<\frac{1}{2} \\
\binom{\frac{1}{4} x+\frac{3}{4}-\frac{1}{8} \sin (4 \pi(y-0.75))}{4 y-3} & \text { for } \frac{1}{2} \leq y
\end{array}\right.
$$

Define the rectangles $\mathbf{R}_{0}=[0,1] \times[0,0.25]$ and $\mathbf{R}_{1}=[0,1] \times[0.75,1]$. Show that $\left\{\mathbf{R}_{0}, \mathbf{R}_{1}\right\}$ is a Markov partition, i.e., show that the images of \mathbf{R}_{0} and \mathbf{R}_{1} by \mathbf{F} are correctly aligned with \mathbf{R}_{0} and \mathbf{R}_{1}.
5. (30 Points) Consider the Hénon map with $a=4.27$ and $b=0.4$,

$$
\mathbf{F}\binom{x}{y}=\binom{4.27-x^{2}+0.4 y}{x} .
$$

(a) Verify that the points $(2.3,-1.7)$ and $(-1.7,2.3)$ form a period-2 orbit.
(b) Classify this period-2 orbit as sink, saddle, source, or none of the above.
6. (30 Points) Consider the solenoid defined as follows. Let

$$
N=\{(t(\bmod 1), z): t \in \mathbb{R}, z \in \mathbb{C},|z| \leq 1\}
$$

and the solenoid map given by

$$
\mathbf{F}(t, z)=\left(2 t(\bmod 1), \frac{1}{4} z+\frac{1}{2} e^{2 \pi t i}\right) .
$$

(a) Explain why N is a trapping region.
(b) Explain why $\Lambda=\bigcap_{k \geq 0} \mathbf{F}^{k}(N)$ is a chaotic attractor.

