Final 6/6/95

Math C13-2

Closed book. You may use hand calculators.

- 1. (30 Points) Let $F(z) = z^3$.
 - a) Describe the orbit of z_0 if $|z_0| > 1$.
 - b) Describe the orbit of z_0 if $|z_0| < 1$.
 - c) Determine the filled in Julia set and the Julia set.
- 2. (50 Points) Consider the map given in polar coordinates by

$$F\left(\frac{\theta}{r}\right) = \left(\frac{8\theta - \frac{\pi}{8}}{1 + \frac{1}{16}r + \frac{2}{\pi}\theta}\right)$$

for $0 \le \theta \le \frac{\pi}{2}$ and $1 \le r \le 2$. (Notice this definition is only for part of the plane.) Let

$$V_L = \{(\theta, r) : 0 \le \theta \le 3\pi/32, \ 1 \le r \le 2\}$$
$$V_R = \{(\theta, r) : \pi/4 \le \theta \le 11\pi/32, \ 1 \le r \le 2\}.$$

- a) Let $g(\mathbf{q}) = \frac{f(\mathbf{q}) \mathbf{q}}{\|f(\mathbf{q}) \mathbf{q}\|}$. Show that g is essential as a map from ∂V_L to C and ∂V_R to C.
- b) Show that $\{V_L, V_R\}$ is a Markov partition for the invariant set of all points whose complete orbit lies in the region $S = \{(\theta, r) : 0 \le \theta \le \pi/2, 1 \le r \le 2\}$.
- c) Let Λ be the invariant set in the region S. Let x_0 be a point in S and $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ be the vector point in the θ direction. Prove that the Lyapunov exponent for x_0 and \mathbf{v}_0 is greater than or equal to $\ln(8)$.
- d) Show that Λ has a chaotic orbit. Note: You do not need to prove all the claims, but discuss why various properties for the orbit are true.

3. (30 Points) Let
$$F\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 2xy+y\\ 3y-x \end{pmatrix}$$
. Find and classify the fixed points.

(over)

C. Robinson

- 4. (30 Points) Consider $Q(x) = x^2 \frac{43}{36}$. Notice that the fixed points are $p_{\pm} = \frac{1}{2} \pm \frac{1}{3}\sqrt{13} = 0.5 \pm 1.202$ and the orbit of period two is $\{q_{\pm}\} = \{\frac{-3 \pm 4}{6}\} = \{\frac{1}{6}, \frac{-7}{6}\}$. Also if x_0 is any point in the open interval $(-p_+, p_+)$ then either (i) there is an iterate $Q^{k_0}(x_0)$ which equals p_- or (ii) the forward orbit $Q^k(x_0)$ is asymptotic to the orbit $\{q_-, q_+\}$. How many different Lyapunov exponents are there for points in $[-p_+, p_+]$? What are they? (You may use the facts given as statements. You only need to answer the questions.)
- 5. (30 Points) Consider the iterated function system with no rotation, points $\mathbf{p}_0 = (0.5, 0)$, $\mathbf{p}_1 = (0, 0.5)$, $\mathbf{p}_2 = (0.5, 1)$, and $\mathbf{p}_3 = (1, 0.5)$. and contraction factor $\beta = 0.4$. Let S be the attractor determined by this iterated function system.
 - a) Describe the set S.
 - b) Determine the fractal dimension of S.
 - c) Determine the topological dimension of S.
 - d) How many boxes of size 0.16 are needed to cover S?
- 6. (30 Points) Write a short discussion of the question "What is a chaotic dynamical system?" Include a discussion of measurements of chaos and some examples (without showing that the examples are chaotic).