C. Robinson

1. Consider the differential equations

Math C13-2

$$\dot{x} = -2x + y$$
$$\dot{y} = 4 - 2xy.$$

- (a) Find the fixed points and classify them as asymptotically stable, stable, or unstable.
- (b) Solve the linearized equation at each fixed point.
- (c) Sketch the phase portrait for the nonlinear system. Include the isoclines where $\dot{x} = 0$ and $\dot{y} = 0$, and a small copy of the phase portrait of the linearized equation centered at each fixed point.
- 2. Consider the differential equations

$$\dot{x} = y$$

$$\dot{y} = -x + x^3 - y.$$

- (a) Find a (weak) Lyapunov function for these equations near (0,0).
- (b) Use the Lyapunov function to discuss the basis of attraction of (0,0). How big is it?
- 3. Consider the differential equations

$$\dot{x} = y$$

 $\dot{y} = -x - y \ln(0.1 + x^2 + 4y^2).$

Let $E(x,y) = \frac{x^2 + y^2}{2}$.

- (a) Calculate E.
- (b) Show $\dot{E}(x, y) \ge 0$ for $\sqrt{x^2 + y^2} = 0.25$.
- (c) Show $\dot{E}(x,y) \leq 0$ for $\sqrt{x^2 + y^2} = 1$
- (d) Let $A = \{(x, y) : 0.25 \le \sqrt{x^2 + y^2} \le 1\}$. Using the Poincaré Bendixson Theorem, show for $(x_0, y_0) \in A$ that $\omega(x_0, y_0)$ is a periodic orbit. Why can't $\omega(x_0, y_0)$ contain a fixed point?
- 4. Consider the map given in polar coordinates by

$$F\begin{pmatrix}\theta\\r\end{pmatrix} = \begin{pmatrix} 8\theta - \frac{\pi}{8}\\ 1 + \frac{1}{16}r + \frac{2}{\pi}\theta \end{pmatrix}$$

for $0 \le \theta \le \frac{\pi}{2}$ and $1 \le r \le 2$. (Notice this definition is only for part of the plane.)

- (a) Let \mathbf{p}_0 be a point and $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ be the vector point in the θ direction. Prove that the Lyapunov exponent for the vector \mathbf{v}_0 along the orbit of \mathbf{p}_0 is equal to $\ln(8)$.
- (b) Using the determinant of the matrix of partial derivatives, determine the second Lyapunov exponent of the orbit.
- (c) Explain why there can be a chaotic orbits. Note: You do not need to prove all the claims, but discuss why various properties for the orbit might be true.

- 5. Consider the figure with corners at the four points $\mathbf{p}_0 = (0.5, 0)$, $\mathbf{p}_1 = (0, 0.5)$, $\mathbf{p}_2 = (0.5, 1)$, and $\mathbf{p}_3 = (1, 0.5)$. At the next step, take four copies inside which are smaller by a factor of 0.4 with each copy touching a different corner of the original figure. Repeat with each remaining quadrilateral. Call the limiting set S.
 - (a) Describe the set S.
 - (b) Determine the box dimension of S.
- 6. Write a short discussion of the question "What is a chaotic dynamical system?" Include a discussion of measurements of chaos and some examples (without showing that the examples are chaotic).

 $\mathbf{2}$