Math C13: Midterm Exam. Friday, February 13, 1998.

Name:

You have 50 minutes to answer the following 3 questions. Please write all work in the space provided. No calculators, notes or other aids are to be used. Point-values are marked on each problem, for a total of 100. Have fun!

- 1. (30 points) Determine the values of c for which the set $\{0, c\}$ is a period-2 orbit for $f_c(x) = x^3 3x + c$. Is such an orbit attracting for any such value of c?
- 2. (35 points)
 - (a) Suppose that $f: X \to X$ and that for every k > 0, f has exactly 3k periodic points of period k.

Make a table showing the total number of fixed points of the map f^k for $k \leq 8$. Explain your reasoning carefully.

(Problem 2, continued)

- (b) Why can't there be a function $f : X \to X$ such that for every k > 0, f^k has exactly k^2 fixed points?
- 3. (35 points) Let $f_a : \mathbf{R} \to \mathbf{R}$ be given by $f_a(x) = x^3 ax$.
 - (a) Find all fixed points and classify them as source, sink, or neither, when 0 < a < 1.

(Problem 3, continued)

(b) Prove that if |x| is sufficiently large, then $|f_a^n(x)| \to \infty$. **Suggestion:** Start by showing that if |x| is sufficiently large, then $|f_a(x)| > 10|x|$.