Math C13: Midterm Exam. Friday, February 13, 1998.

Name:

You have 50 minutes to answer the following 3 questions. Please write all work in the space provided. No calculators, notes or other aids are to be used. Point-values are marked on each problem, for a total of 100. Have fun!

1. (30 points) Determine the values of c for which the set $\{0, c\}$ is a period2 orbit for $f_{c}(x)=x^{3}-3 x+c$. Is such an orbit attracting for any such value of c ?
2. (35 points)
(a) Suppose that $f: X \rightarrow X$ and that for every $k>0, f$ has exactly $3 k$ periodic points of period k.
Make a table showing the total number of fixed points of the map f^{k} for $k \leq 8$. Explain your reasoning carefully.
(Problem 2, continued)
(b) Why can't there be a function $f: X \rightarrow X$ such that for every $k>0, f^{k}$ has exactly k^{2} fixed points?
3. (35 points) Let $f_{a}: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f_{a}(x)=x^{3}-a x$.
(a) Find all fixed points and classify them as source, sink, or neither, when $0<a<1$.
(Problem 3, continued)
(b) Prove that if $|x|$ is sufficiently large, then $\left|f_{a}^{n}(x)\right| \rightarrow \infty$.

Suggestion: Start by showing that if $|x|$ is sufficiently large, then $\left|f_{a}(x)\right|>10|x|$.

