(1) (25 Points) The doubling map is defined by

$$
D(x)=2 x \quad(\bmod 1) .
$$

(a) Determine the complete orbit for each of the points $1 / 3,1 / 5$, and $1 / 10$. Indicate whether each of these points is periodic, eventually periodic, or neither.
(b) Determine how many points the map D has of the least period $1,2,3$, and 6 .
(2) (25 Points) Let $f(x)=\frac{x^{3}}{2}+\frac{x}{2}$.
(a) Find the fixed points and classify them as attracting, repelling, or neither.
(b) Use the cobweb plot analysis to determine the dynamical behavior of all points in \mathbb{R}. Describe the orbits using words as well as by the plot.
(3) (25 Points) Let $G(x)=4 x(1-x)$. Find the map $f(y)$ that is conjugate to G via the map $y=C(x)=2 x-1$. Note that $x=C^{-1}(y)=\frac{y+1}{2}$.
(4) (25 Points) Consider the map $F(x)=r x(1-x)$ for $r=3.2$. The fixed points are $\mathbf{0}$ and $\mathbf{p}=11 / 16$, both of which are repelling. It has a stable period- 2 orbit, $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$ where

$$
\begin{aligned}
& \mathbf{q}_{1}=\frac{1+r-\left(r^{2}-2 r-3\right)^{\frac{1}{2}}}{2 r} \approx 0.5130 \\
& \mathbf{q}_{2}=\frac{1+r+\left(r^{2}-2 r-3\right)^{\frac{1}{2}}}{2 r} \approx 0.7995 .
\end{aligned}
$$

All other points $x_{0} \in(0,1)$ are either (i) eventually periodic with period 1 (eventually landing on the fixed point \mathbf{p}), or (ii) asymptotic to the period-2 orbit $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}\right\}$. (You do not need to show any of these facts.)
(a) Determine the Lyapunov exponents $h\left(x_{0}\right)$ for all the points in $[0,1]$. Explain why your answer is correct.
(b) Are there any chaotic orbits for points in [0, 1]? Explain your answer.

