No books, no notes. You may use hand calculators

1. (20 Points) Consider the linear map

$$
\left(\begin{array}{ll}
\frac{9}{2} & -1 \\
4 & -\frac{1}{2}
\end{array}\right)\binom{x}{y}
$$

from the plane \mathbb{R}^{2} to itself. The eigenvalues are 3.5 and 0.5 . Sketch the phase portrait, indicating the stable and unstable manifolds. Also, indicate the behavior of other typical points.
2. (20 Points) Let

$$
\mathbf{F}\binom{x}{y}=\binom{x+y+x^{2}}{2 x+3 y} .
$$

The fixed points are $(0,0)$ and $(1,-1)$. Classify these fixed points are source, saddle, sink, or none of these.
3. (20 Points) Let

$$
\mathbf{F}\binom{x}{y}=\binom{0.5 x}{2 y-x^{3}},
$$

whose inverse is

$$
\mathbf{F}^{-1}\binom{x}{y}=\binom{2 x}{0.5 y+4 x^{3}} .
$$

(a) Show that the curve $y=\frac{8}{15} x^{3}$ is invariant by \mathbf{F}..
(b) Show that the stable manifold is given by $y=\frac{8}{15} x^{3}$.
(c) Show that the unstable manifold is given by $x=0$.
4. (20 Points) Take the Hénon map with $a=5$ and $b=-0.3$,

$$
\mathbf{F}\binom{x}{y}=\binom{5-0.3 y-x^{2}}{x}
$$

Define the rectangles $\mathbf{V}_{L}=[-3,-1] \times[-3,3]$ and $\mathbf{V}_{R}=[1,3] \times[-3,3]$.
(a) Show that the net rotation of \mathbf{F} on the boundary of the rectangles is nonzero for both \mathbf{V}_{L} and \mathbf{V}_{R}, i.e., the map has nonzero index.
(b) Show that $\left\{\mathbf{V}_{L}, \mathbf{V}_{R}\right\}$ is a Markov partition, i.e., show that the images of \mathbf{V}_{L} and \mathbf{V}_{R} by \mathbf{F} are correctly aligned with \mathbf{V}_{L} and \mathbf{V}_{R}.
(Over next problem.)
5. (20 Points) Let $\mathbf{S}=[0,1] \times[0,1]$ be the unit square which contains four horizontal strips $\mathbf{H}_{0}, \mathbf{H}_{1}, \mathbf{H}_{2}$, and \mathbf{H}_{3} of height 0.1 , and four vertical strips $\mathbf{V}_{0}, V_{1}, V_{2}$, and V_{3} of width $1 / 12$. See Figure below. Consider a map \mathbf{F} from \mathbb{R}^{2} to itself, such that maps \mathbf{H}_{j} onto \mathbf{V}_{j} by stretching by 10 in the vertical direction and contracting by $1 / 12$ in the horizontal direction and with the appropriate translation. The strips \mathbf{H}_{1} and \mathbf{H}_{3} are also flipped over. Notice that

$$
\mathbf{S} \cap \mathbf{F}(\mathbf{S})=\mathbf{V}_{1} \cup \mathbf{V}_{2} \cup \mathbf{V}_{3} \cup \mathbf{V}_{4},
$$

and

$$
\mathbf{S} \cap \mathbf{F}^{-1}(\mathbf{S})=\mathbf{H}_{1} \cup \mathbf{H}_{2} \cup \mathbf{H}_{3} \cup \mathbf{H}_{4} .
$$

(a) How many vertical strips does the intersection

$$
\mathbf{S} \cap \mathbf{F}(\mathbf{S}) \cap \mathbf{F}^{2}(\mathbf{S})
$$

contain and how wide are they?
(b) How many horizontal strips does the intersection

$$
\mathbf{S} \cap \mathbf{F}^{-1}(\mathbf{S}) \cap \mathbf{F}^{-2}(\mathbf{S})
$$

contain and how high are they?
(c) Notice that

$$
\mathbf{V}_{j}=\left\{\mathbf{x}: \mathbf{F}^{-1}(\mathbf{x}) \in \mathbf{H}_{j}\right\} \equiv \mathbf{S}_{j .}
$$

Let

$$
\mathbf{S}_{s_{-2} s_{-1}}=\left\{\mathbf{x}: \mathbf{F}^{-1}(\mathbf{x}) \in H_{s_{-1}} \text { and } \mathbf{F}^{-2}(\mathbf{x}) \in H_{s_{-2}}\right\} .
$$

What is the order of the vertical strips

$$
\mathbf{S}_{00}, \mathbf{S}_{10 .}, \ldots, \mathbf{S}_{33 .} ?
$$

(d) How many fixed points does the map \mathbf{F} have?

