No books, no notes. You may use hand calculators

1. (30 Points) Let $g(x)=\frac{2}{5} x^{3}-\frac{7}{5} x$. The fixed points are 0 , and $\pm \sqrt{6}$. There is a period- 2 orbit of 1 and -1 . The critical points are $\pm \sqrt{\frac{7}{6}}$. Notice that

$$
g((-\sqrt{6}, \sqrt{6})) \subset(-\sqrt{6}, \sqrt{6}) .
$$

You may use the fact that every point in $[-\sqrt{6}, \sqrt{6}]$ is in the basin of either the fixed points or points of period two. See back of test for plot of $g(x)$ and $g^{2}(x)$.
a. Calculate the Schwarzian derivative,

$$
S_{g}(x)=\frac{g^{\prime \prime \prime}(x)}{g^{\prime}(x)}-\frac{3}{2}\left(\frac{g^{\prime \prime}(x)}{g^{\prime}(x)}\right)^{2}
$$

b. Determine the Lyapunov exponents $h\left(x_{0}\right)$ for all the points x_{0} in $[-\sqrt{6}, \sqrt{6}]$. Explain why your answer is correct.
c. Let $x_{0}=g\left(\sqrt{\frac{7}{6}}\right)$. What is the Lyapunov exponent of x_{0}.
2. (25 Points) Let f be a continuous function defined on the interval $[1,6]$ with $f(1)=5$, $f(2)=6, f(3)=4, f(4)=1, f(5)=2$, and $f(6)=3$. Assume the the function is linear between these integers.
(a) Label the intervals between the integers and give the transition graph.
(b) For which n is there a period-n orbit? Give the Symbol sequence in terms of the intervals which will give each period that exists.
3. (20 Points) Let $f(x)=x^{3}$ and $g(y)=\frac{1}{4} y^{3}+\frac{3}{2} y^{2}+3 y$. Verify that $y=C(x)=2 x-2$ is a conjugacy between f and g.
4. (25 Points) Let

$$
T(x)= \begin{cases}5 x & x \leq 0.5 \\ 5(1-x) & x \geq 0.5\end{cases}
$$

a. Sketch the graph of T.
b. Describe the set of points x such that $x, T(x), T^{2}(x) \in[0,1]$,

$$
\left\{x: T^{j}(x) \in[0,1] \text { for } 0 \leq j \leq 2\right\} .
$$

It is made up of how many intervals of what length? What is its total length?
c. Let

$$
K=\left\{x: T^{j}(x) \in[0,1] \text { for all } j \geq 0\right\}
$$

Explain which numbers in $[0,1]$ belong to K in terms of the numbers expansion base 5, i.e.,

$$
x=\sum_{j=1}^{\infty} \frac{a_{j}}{5^{j}} .
$$

d. Give a number in K that is not an end point of one of the intervals in the finite process defining K.

Figure 1. Plot of graph of $g(x)$ for problem 1.

Figure 2. Plot of graph of $g^{2}(x)$ for problem 1.

