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Abstract. We consider the problem of classifying the dynamics of complex polynomials

f : C → C restricted to the basins of infinity X(f). We synthesize existing combinatorial

tools — tableaux, trees, and laminations — into a new invariant of basin dynamics we call

the pictograph. For polynomials with all critical points escaping to infinity, we obtain a

complete description of the set of topological conjugacy classes with given pictograph. For

arbitrary polynomials, we compute the total number of topological conjugacy classes of

basins (f,X(f)) with a given pictograph. We also define abstract pictographs and prove

that every abstract pictograph is realized by a polynomial. Extra details are given in

degree 3, and we provide examples that show the pictograph is finer invariant than both

the tableau of [BH2] and the tree of [DM].

Nous étudions la question de la classification de la dynamique des polynômes complexes

f : C → C restreints à leur bassin de l’infini. Nous faisons la synthèse d’outils de combina-

toire — tableaux, arbres, laminations — en un nouvel invariant du bassin dynamique que

nous appelons pictograph. Pour les polynômes dont tous les points critiques s’échappent

vers l’infini, nous obtenons une description complète de l’ensemble des classes de conju-

gaison topologiques ayant un pictograph donné. Plus généralement, pour tout polynôme,

nous calculons le nombre de classes de conjugaison topologiques du basin (f,X(f)) à pic-

tograph donné. Nous définissons les pictographs de façon abstraite et prouvons que chacun

d’eux est réalisable par un polynôme. Nous donnons plus de détails en degré 3 et donnons

des exemples montant que le pictograph est un invariant plus fin que les tableaux de [BH2]

et que les arbres de [DM].
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1. Introduction

This article continues a study of the moduli space of complex polynomials f : C → C,

in each degree d ≥ 2, in terms of the dynamics of polynomials on their basins of infinity

[BH1, BH2, DM, DP2, DP1]. Our main goal is to classify the topological conjugacy classes

of a polynomial f restricted to its basin

X(f) = {z ∈ C : fn(z)→∞}.

The basin X(f) is an open, connected subset of C. In degree d = 2, there are only two topo-

logical conjugacy classes of basins (f,X(f)), distinguished by the Julia set being connected

or disconnected; see, for example, [McS, Theorem 10.1]. In every degree d > 2, there are

infinitely many topological conjugacy classes of basins, even among the structurally stable

polynomials in the shift locus. The main objective of this article is the development of
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combinatorial methods that allow us to distinguish and enumerate these conjugacy classes

in all degrees.

By definition, a polynomial f of degree d is in the shift locus if all of its d − 1 critical

points are in X(f). In this case, the basin X(f) is a rigid Riemann surface, admitting up

to Möbius transformations a unique embedding into the Riemann sphere ([Mc, §2.8], [AS,

§IV.4]). In this case, the restriction f : X(f) → X(f) uniquely determines the conformal

conjugacy class of f : C → C. Thus, our results on basin dynamical systems (f,X(f)) –

given as Theorems 1.1, 1.2, 1.3, and 1.4 below – also provide a combinatorial classification

of topological conjugacy classes of polynomials in the shift locus.

In the theory of dynamical systems, the study of a system like (f,X(f)) is somewhat

nonstandard. On the one hand, since all points tend to ∞ under iteration, the system is

transient. On the other hand, the structure of (f,X(f)), with an induced dynamical system

on its Cantor set of ends as a topological space, carries enough information to recover the full

entropy of the polynomial (f,C); see [DM, Theorem 1.1]. Our methods and perspective are

inspired by the two foundational articles of Branner and Hubbard on polynomial dynamics

which lay the groundwork and treat the case of cubic polynomials in detail [BH1, BH2].

1.1. The pictograph, informally described. We begin with a rough description of the

pictograph D(f) associated to a polynomial basin dynamics (f,X(f)). A formal presenta-

tion is given in §2.2 (for cubic polynomials) and Section 10 (in arbitrary degree).

Global setup. The basin dynamics f : X(f) → X(f) fits naturally into a sequence of

dynamical systems related by semiconjugacies. These are organized in the diagram below,

and are explained in the following paragraphs.

(1.1) X (f)

F
		 gf // X(f)

f

		 πf //

Gf

44T (f)

F

		 hf // (0,∞)

·d
		
.

The map Gf is the harmonic Green’s function; its values we call heights or sometimes

escape rates. The grand orbits (under multiplication by d) of heights of critical points

are called nongeneric heights. We endow (0,∞) with a simplicial structure in which the

nongeneric heights are vertices. The map πf collapses connected components of level sets

of Gf to points; its image is the DeMarco-McMullen tree T (f), and f induces a self-map

F : T (f)→ T (f). By construction, the factor hf : T (f)→ (0,∞) is simplicial.

Local features. See Figure 1.1. Every vertex v of T (f) has a nongeneric height hf (v); and

for each vertex, there is a maximal interval (a, b) ⊂ (0,∞) containing hf (v) for which all

heights t ∈ (a, b) − {hf (v)} are generic. The connected component Xv(f) of G−1f (a, b)

containing π−1f (v) is a planar Riemann surface that we call a local model surface. The

intersection LXv := Xv(f)∩ π−1f (v) is called the central leaf of Xv(f). The central leaf LXv

is a connected component of a fiber of Gf , is homeomorphic to the underlying space of a

finite planar graph, and is the boundary of the unbounded component of its complement.

This implies it is naturally the quotient of the unit circle by a certain kind of equivalence

relation, a finite lamination, denoted Lv. The lamination Lv is encoded by a simple picture
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hf (v)v
⇡f hf

Lv Tv(f)Xv(f) (a, b)

LXv

Figure 1.1. The local features of the quotient maps in (1.1) at a vertex v

of T (f) and the associated lamination Lv.

in a disk, a lamination diagram. The lamination diagram is not endowed with coordinates

– rotating the picture does not change it – but the circle is equipped with a metric induced

by the 1-form |∂Gf |. For example: if two critical points c1, c2 belong to the same central

leaf LXv , their relative angles in Lv are determined by the metric.

The pictograph. The pictograph D(f) is a diagram consisting of a collection of laminations

Lv, associated to vertices in the convex hull of the critical points of (F, T (f)), together

with labels that mark the orbits of the critical points. For illustration, Figure 1.2 shows

a pictograph associated to a polynomial of degree 4 in the shift locus. The markings on

each lamination indicate which iterate of a critical point lands on a central leaf or is seen

through the “pant leg” of the local model surface. We emphasize two things.

(1) The pictograph contains both combinatorial and metric information. For example,

if the iterates of two critical points, say f i(c1) and f j(c2), both lie on a central

leaf LXv , then the lamination Lv is labelled by symbols i1 and j2, placed on the

unit circle at a distance recording the metric information of how these points are

deployed in LXv .

(2) The pictograph is a static object. It does not, by definition, include a self-map of

an object. However, it allows for reconstruction of dynamics, as described in the

main results presented below.

The next paragraph describes what the pictograph captures.

The tree of local models. The tree of local models is the disjoint union X (f) := tvXv(f),

indexed by the vertices v of the tree T (f). It is equipped with a holomorphic self-map F
induced by f . The collection of inclusions {Xv(f) ↪→ X(f)}v∈T (f) induces a (generically

two-to-one) gluing quotient map gf : X (f) → X(f), which is not part of the data of the

tree of local models.

As we shall see, if we are given the heights of the critical points, then the pictograph

D(f) determines F : X (f) → X (f) up to holomorphic conjugacy. But a gluing map is

required to determine the conformal conjugacy class of a basin (f,X(f)), and there can be

many polynomials with the same pictograph.

1.2. Relation with other invariants: a quick summary. The pictograph synthesizes

the pattern and tableau of Branner and Hubbard, the metric tree equipped with dynamics

of DeMarco and McMullen, and the laminations of Thurston. For cubic polynomials, we
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Figure 1.2. A degree 4 pictograph, with critical escape rates

(M,M/42,M/43) for some M > 0.

will give a more detailed account of the relationships between the pictograph and other

invariants in Section 3. Here, we confine ourselves to some brief remarks for experts.

Suppose f is a cubic polynomial. The Branner-Hubbard tableau τ(f) records the first-

return map along the “critical nest”. The critical nest is a nested sequence P1 ⊃ P2 ⊃
P3 ⊃ . . . where for each n, the puzzle piece Pn contains a critical point and is a bounded

component of the complement of some LXvn
. The tableau data has an equivalent form, the

Yoccoz τ -sequence. The DeMarco-McMullen tree F : T (f) → T (f) records a first-return

map along a “decorated critical nest”, and so is a finer invariant than the tableau τ(f).

The pictograph D(f) records the first return to a “decorated critical nest together with an

embedding into the plane”, and so is finer than both the DeMarco-McMullen tree and the

tableau. Our methods are inspired also by techniques in [BDK], [Ki2], [Mi3], [Pé], and [Th].

1.3. Main results: realization and counting. If all critical points of f have bounded

orbits, then (f,X(f)) is conformally conjugate to (zd, {|z| > 1}). We therefore restrict our

attention to the case where at least one critical point of f lies in X(f).

Branner-Hubbard and DeMarco-McMullen formulated axioms for classes of abstract

tableaux and abstract trees, respectively, and they used these axioms to characterize those
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tableaux and trees arising from polynomials. Similarly, we introduce an abstract notion of

the pictograph, and we prove:

Theorem 1.1. Every abstract pictograph arises for some polynomial.

Next, we study the problem of determining when two polynomials have the same picto-

graph.

Theorem 1.2. The pictograph is a topological-conjugacy invariant. For any given pic-

tograph D, the number of topological conjugacy classes Top(D) of basins (f,X(f)) with

pictograph D is algorithmically computable from the data of D.

There is a unique topological conjugacy class of quadratic polynomials with disconnected

Julia set; accordingly, there is a unique quadratic pictograph D, and Top(D) = 1. For

degrees d ≥ 3, the computation of Top(D) is achieved by an analysis of the quasiconformal

twist deformations on the basin of infinity, as introduced in [BH1] and [McS], and of the

symmetries of the pictographD that we carry out in Section 8. The algorithmic computation

of Top(D) has the simplest formulation in degree 3, where the symmetries are easy to

analyze; the count is given explicitly in Theorems 4.1 and 4.2.

As mentioned in §1.2, the pictograph is a strictly finer invariant than both the tableau

of [BH2] defined for cubic polynomials and the tree of [DM] defined for polynomials of

all degrees. Nevertheless, there exist examples with Top(D) > 1 in every degree d > 2;

see Figure 3.3 and §12.9. Though the pictograph is not a complete invariant of topological

conjugacy of basins (f,X(f)), Theorem 1.2 implies that it “knows” its failure. Furthermore,

the algorithms for counting Top(D) for a given pictograph D can be augmented to also count

all possible pictographs, subject to given combinatorial constraints. Indeed, this algorithm

is completed and implemented in degree d = 3 in [DS1] and [DS2]. As an application, the

algorithm is used in [DS2] to compute the Euler characteristic of the algebraic curves

Sp =
{

(a, v) ∈ C2|f(z) = z3 − 3a2z + (2a3 + v) has a periodic critical point of period p
}
,

introduced in [Mi3].

1.4. Main results: the structure of moduli space. In [DP2] we studied the moduli

space Bd of basin dynamical systems (f,X(f)) for polynomials f of degree d ≥ 2. Here

we prove that, once the pictograph and critical escape rates are fixed, the locus in Bd with

this data admits the following description. See §2.1 for a more thorough discussion of the

notion of critical heights mentioned in the statement.

Theorem 1.3. Fix a pictograph D with N = N(D) grand orbits of nongeneric heights and

a corresponding list of N compatible critical heights. Then the locus in the space Bd of basin

dynamical systems with this data is a compact locally trivial fiber bundle Bd(D) → (S1)N

over a torus with totally disconnected fibers. The total space is foliated by N -manifolds, and

the leaves are in bijective correspondence with topological conjugacy classes of basins with

the given pictograph.

The twisting deformation of [McS] induces the local holonomy of the fiber bundle. The

counting of these topological conjugacy classes in Theorem 1.2 is done via an analysis of

the monodromy of this bundle.
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The main result of [DP2] is that the projection π :Md → Bd, from conformal conjugacy

classes of polynomials (f,C) to conformal conjugacy classes of basins (f,X(f)), has compact

and connected fibers. Moreover, π :Md → Bd is a homeomorphism on the shift locus. Thus,

the description in Theorem 1.3 pulls back to Md, at least where the fibers of π are points.

In fact, the conformal class of (f,X(f)) uniquely determines the conformal class of (f,C)

unless there is a critical point in a periodic end of X(f); see [YZ], [BH2]. The fibers of

π : Md → Bd over basins with periodic critical ends contain continua. For example, in

the case of cubics, these fibers contain small copies of the Mandelbrot set coming from

renormalizations around periodic components of the filled-in Julia set. Combining these

facts, we have the following result about Md, similar to Theorem 1.3:

Theorem 1.4. Fix a pictograph D with N = N(D) grand orbits of nongeneric heights and

a corresponding list of N compatible critical heights. Then the locus in the moduli space

Md of polynomials with this data is a compact locally trivial fiber bundle Md(D)→ (S1)N

over a torus. The fibers are totally disconnected if and only if D has no periodic critical

ends. In this case, the total space is foliated by N -manifolds, and the leaves are in bijective

correspondence with topological conjugacy classes of polynomials with the given pictograph.

The structure of the bundle when D has periodic critical ends is delicate. A pictograph

D has a periodic critical end if and only if any polynomial f with this pictograph has a

periodic component of its Julia set containing a critical point. A result of [QY, KvS] (and

[BH2] in degree 3) states that this occurs if and only if the Julia set of f has connected

components that are not points. As observed in [DP2], one might expect that each non-

singleton fiber of π :Md → Bd is a homeomorphic copy of a product of connectedness loci∏
i Cdi ⊂

∏
iMdi for some integers di ≥ 2 with

∑
i(di−1) ≤ d−1. Indeed, the straightening

theorem of Douady and Hubbard gives a map from any non-singleton fiber π−1(x) to such a

product, where di is the degree of a polynomial-like restriction [DH]. But the discontinuity

of straightening suggests that this expectation may fail; see [In]. In degree d = 3, it is

known each fiber π−1(x) is either a point or a homeomorphic copy of the Mandelbrot set

[BH2, Theorem 9.1]; while in degree 2, each fiber of π is either a point or the Mandelbrot

set itself.

1.5. Structure of the article. The article is divided into five parts:

Part I. Cubic pictographs. (Sections 2, 3, 4) We begin in Section 2 with a description of

our main object, the pictograph, in the simplest yet nontrivial setting of cubic polynomials.

(The simplest case is that of degree d = 2, where all polynomials with disconnected Julia

set are topologically conjugate.) In fact, we do not give the full definition of the pictograph

in these sections, but a simplified though equivalent version. In Section 3, we provide a

comparison of our simplified pictograph and the known invariants for cubic polynomials, the

tableau of [BH2] (or, equivalently, the τ -sequence) and the tree of [DM]. We give explicit

examples illustrating that the pictograph is a strictly finer invariant than the tree, which is

itself a strictly finer invariant than the tableau and τ -sequence. Section 4 contains a precise

version of Theorem 1.2, appearing as Theorems 4.1 and 4.2. Proofs will be given in Part V.

Part II. Local structure and laminations. (Section 5) In this part, we begin the

formal analysis needed to define and study pictographs in all degrees. Our focus is on local
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model maps: restrictions f : Xv(f) → XF (v)(f), where X is a polynomial, and Xv(f) is a

local model surface as described in §1.1. In [DP2], we introduced local model surfaces and

local model maps. Here, we prove that the conformal structure of a local model surface is

recorded by a finite lamination. We also prove that the local model map, up to symmetries

and variation of heights, can be recovered from the static data consisting of the domain

lamination and its degree. This is the central ingredient allowing for the recovery of local

model maps up to symmetries from purely static data. The main result is stated as Theorem

5.1.

Part III. The tree of local models. (Sections 6, 7, 8) Throughout Part III, we fix a

polynomial f : C→ C of degree d ≥ 2, such that at least one critical point of f lies in X(f).

In Section 6 we provide a review of the polynomial tree (F, T (f)), defined in [DM]. There

we also introduce a key concept – the spine of the tree (F, T (f)). This is defined as the

convex hull of the critical vertices, and it plays a crucial role for us. In Section 7 we define

formally the tree of local models (F ,X (f)) associated to f that was introduced in §1.1. The

spine of the tree of local models is the analogous collection of local models over the convex

hull of the critical vertices. We show (Proposition 7.2) that the dynamical system (F ,X (f))

is determined by the first-return map (R,S) on its spine. We study the symmetries of a

tree of local models in Section 8. There are local symmetries, for a local model at a vertex,

and global symmetries in the underlying tree. The analysis of this symmetry is a crucial

ingredient in the algorithmic count of Top(D) in Theorem 1.2.

Both trees and trees of local models can be defined abstractly, from a list of axioms.

Following the proof of the realization theorem for trees [DM, Theorem 1.2], we prove the

analogous realization theorem (Theorem 7.1): every abstract tree of local models comes

from a polynomial.

Part IV. The moduli space and topological conjugacy. In Part IV (Section 9), we

study our dynamical systems in families. We begin by recalling facts about the quasicon-

formal deformation theory of polynomials from [McS], specifically the wringing, twisting,

and stretching deformations on the basin of infinity. These quasiconformal conjugacies pa-

rametrize the topological conjugacy classes of basins. We show (Theorem 9.1) that the tree

of local models is a twist-conjugacy invariant.

Fixing a tree of local models (F ,X ), we examine the structure of the subset Bd(F ,X ) in

the moduli space Bd of basins (f,X(f)) with a given tree of local models (F ,X ). This is

the core of the proof of Theorem 1.3.

Part V. Combinatorics and counting. (Sections 10, 11, 12) In Part V, we formally

define the pictograph for polynomials of arbitrary degree. We prove that the pictograph

is a topological-conjugacy invariant of polynomials (Theorem 10.1). We also prove that a

tree of local models can be reconstructed from its pictograph and the list of critical escape

rates (Proposition 10.2), thus completing the proof of Theorem 1.3 when combined with

the work of Part IV. We define an abstract pictograph as the pictograph associated to an

abstract tree of local models and give the proof of Theorem 1.1.

We complete the proof of Theorem 1.2 in Section 12, providing the arguments for counting

topological conjugacy classes associated to each pictograph. We treat the case of cubic
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polynomials first and in greatest detail, giving the proofs of Theorems 4.1 and 4.2 in Section

11.

1.6. Acknowledgements. We thank Jan Kiwi, Curt McMullen, and Tan Lei for helpful

discussions. We also thank the anonymous referees for numerous thoughtful suggestions.

Our research was supported by the National Science Foundation and the Simons Foundation.

2. Basic definitions and the cubic pictograph

In this section, we give some key definitions needed throughout the article. We introduce

the pictograph in the simplest, yet nontrivial, setting of cubic polynomials. In fact, we

introduce a simpler version that exists only for cubic polynomials, the simplified pictograph

(also called a truncated spine in [DS1, DS2]) which is equivalent to the pictograph in this

setting. Because we go to great length to give formal definitions later, we err on the side of

informality here, in order to provide a working definition as quickly as possible.

2.1. Basic definitions. We recall some basic facts from [Mi2]. Fix a polynomial f of any

degree d ≥ 2. The basin of infinity of f is

X(f) = {z ∈ C : fn(z)→∞ as n→∞}.

The escape-rate (or Green’s ) function of f is

Gf (z) = lim
n→∞

1

dn
log+ |fn(z)|.

It is continuous on C and harmonic on X(f), with Gf (z) > 0 if and only if z ∈ X(f). Since

Gf (f(z)) = dGf (z), we see that Gf induces a semiconjugacy between f : X(f) → X(f)

and multiplication by d in the real interval (0,∞).

The critical escape rates of f are the elements of {Gf (c) : f ′(c) = 0}. We define N = N(f)

to be the maximal number of positive, independent critical escape rates, where two rates x

and y are dependent if x = dny for some n ∈ Z. In other words, it is the number of grand

orbits of positive critical escape rates {Gf (c) : f ′(c) = 0 and c ∈ X(f)} under multiplication

by d on (0,∞).

The maximal critical escape rate is the value

M(f) = max{Gf (c) : f ′(c) = 0}.

It is zero if and only if f has connected Julia set, and if and only if (f,X(f)) is conformally

conjugate to (zd, {|z| > 1}).
The basin X(f) is naturally equipped with a holomorphic 1-form

ωf = 2i ∂Gf .

It follows that |ωf | gives a locally Euclidean metric on X(f) away from its zeros, which are

the critical points inX(f) and their iterated preimages. The functional equationGf (f(z)) =

dGf (z) implies that
1

d
f∗ω = ω
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and hence away from zeros of ω, with respect to the metric |ω|, the map f is locally a

homothety with constant expansion factor d. Since Gf (z) ∼ log |z| + O(1) (see [Mi2, §9])

as z →∞, each level curve {z ∈ X(f) : Gf (z) = c} has length 2π in the metric |ω|.

2.2. The cubic pictograph, simplified form. Now assume that f is a polynomial of

degree 3 with maximal critical escape rate M(f) > 0. Label the critical points of f as c1
and c2 so that Gf (c1) ≥ Gf (c2). The length L(f) of the polynomial f is the least integer l

so that

Gf (f l(c2)) ≥ Gf (c1).

If no such integer exists, then we set L(f) =∞; this occurs if and only if the orbit of c2 is

bounded.

The simplified pictograph of f is a column of max{L(f), 1} diagrams, each consisting of

the unit circle and a finite collection of hyperbolic geodesics in the unit disk, together with

a collection of non-negative integers; see Figures 2.1-2.3. These integers, or labels, either

label regions in the disk bounded by geodesics, or label particular points on the unit circle.

We emphasize that rotating a diagram leaves it unchanged: our unit circles do not have

coordinates. The diagrams are constructed as follows.

Let L0 be the level set

L0 = {z : Gf (z) = Gf (c1)}.

For length L(f) > 1 and each 0 < i < L(f), let Li be the connected component of the level

set

{z : Gf (z) = Gf (c1)/d
i}

that separates the critical point c2 from ∞. Each Li inherits a metric from |ωf | (or equiv-

alently from external angles) that we normalize by scaling to have total length 2π. Its

orientation in the plane induces an oriented parameterization by arclength of a circle. It

is important to note that we forget the marking by external angles and fix any choice of

parametrization by arclength from S1 = R/2πZ to Li, respecting the orientation.

We represent each Li independently as a unit circle in the plane. With respect to the

chosen parametrization, we draw hyperbolic geodesics between pairs of points that are

identified in Li. For example, for every cubic polynomial f with length L(f) > 0, the curve

L0 is represented by a disk with a single hyperbolic geodesic partitioning the unit circle into

arcs of length 4π/3 and 2π/3, as in the two right-hand diagrams of Figure 2.1. Because

the parametrization was arbitrary, any rotation of the disk with its drawn-in geodesics is

considered an equivalent presentation of Li.

We refer to this circular diagram of Li, determined uniquely up to rotation, as the finite

lamination of f at level i. The hyperbolic geodesics partition the unit disk into finitely

many connected components. Each open component with boundary of positive length in

the circle is called a gap of the lamination. The gaps correspond to the bounded, connected

components of C \ Li in the plane.

It remains to define the labelling of the finite laminations. The symbols introduced will

represent the locations of the points fk(c2) for each k ≤ L(f). If L(f) = 0, no labellings

are necessary.
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               0

            
               0

1

Figure 2.1. The simplified pictographs for three cubic polynomials of

lengths 0 and 1. Left: an example with length 0; i.e., with Gf (c2) = Gf (c1).

Center: the simplified pictograph of every cubic polynomial of length 1 and

Gf (c1) > Gf (c2) > Gf (c1)/3. Right: an example of a length 1 cubic poly-

nomial with Gf (c2) = Gf (c1)/3; as we shall see, the location of the dot on

the circle, relative to the hyperbolic geodesic, distinguishes the topological

conjugacy class of f in this setting.

1            0

0         0

           0    1

         0

           0    1

2

1

1            0

0

2

(A) (B) (C) (D)

Figure 2.2. The simplified pictographs for four cubic polynomials of length

2. (A, B): Every cubic polynomial with Gf (c1)/3 > Gf (c2) > Gf (c1)/9 will

have one of these two simplified pictographs. (C, D): Examples for length 2

polynomials with Gf (c2) = Gf (c1)/9.

Now assume L(f) > 0 and fix 0 ≤ i < L(f). With respect to the chosen parametrization

S1 → Li, mark a point on the circle S1 with a dot, and label this point by the integer k ≥ 0

if fk(c2) is equal to that point in Li. Label a gap with the integer k if fk(c2) lies in that

connected component of C \ Li.
We have now constructed max{L(f), 1} labelled lamination diagrams. We organize these

labelled lamination diagrams into a column, with L0 at the top and LL(f)−1 at the bottom

(if L(f) < ∞). This column of diagrams is called the simplified pictograph of the cubic

polynomial f .

2.3. Examples of simplified pictographs. In Figures 2.1, 2.2, and 2.3, we provide ex-

amples of simplified pictographs for cubic polynomials of lengths L(f) = 0, 1, 2, 3. The

pictograph is defined in Section 10; the reader should then compare Figure 2.3 to the (un-

simplified) pictograph of the same polynomial in Figure 10.2.
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1            0
               2

0

0

2

3

Figure 2.3. The simplified pictograph for a cubic polynomial of length 3,

with Gf (c2) = Gf (c1)/27. (Its full pictograph is shown in Figure 10.2.)

3. More examples in degree 3: A comparison of invariants

In this section, we compare the simplified pictographs of §2.2 to the tableaux of [BH2]

(equivalently, the Yoccoz τ -sequences) and the trees of [DM]. We show how to compute the

τ -sequence and the tree code from the simplified pictograph. (In [DM], it was shown that

the τ -sequence can be computed from the tree code of a cubic polynomial, and a tree code

uniquely characterizes a cubic tree up to the choice of critical escape rates, which amounts

to fixing a metric on the tree.)

To illustrate the distinction between the invariants – trees being strictly finer than

tableaux, pictographs being strictly finer than trees – we include examples showing the

existence of cubic polynomials with

(1) the same tableau (or τ -sequence) but different trees (F, T ),

(2) the same tree (F, T ) but different pictographs, and

(3) the same pictographs but different topological conjugacy classes.

The examples we provide are structurally stable in the shift locus and have minimal length

in the sense of §2.2, and so these provide the simplest possible examples.

In the remainder of this section, we show how the τ -function of [BH2] and tree code of

[DM] may be computed from the data of the simplified pictograph. The reader not familiar

with these invariants may take our results as their definition. Later on in §11.5, however,

we do give the definition of the τ -sequence of a cubic polynomial as part of our discussion

of counting topological conjugacy classes of cubics. Further results on trees will appear in

Section 6.

3.1. From simplified pictographs to trees and tableaux. Fix a cubic polynomial with

length L(f). The τ -sequence is a certain sequence of non-negative integers of length L(f);

see §11.5 (or [BH2]) for its definition. Here, we give an equivalent version, using the language

of simplified pictographs. For L(f) = 0, the τ -sequence is an empty sequence. We have
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τ(1) = 0 for every polynomial with length L(f) > 0. For L(f) > 1 and each 0 < n < L(f),

it is immediate from the definitions that

τ(n) = max{j : lamination at level j is labelled by (n− j)}.

To compute τ(L(f)), we consider the set

L = {j : the central gap in lamination at level j is labelled by (L(f)− j − 1)},

where the central gap of the lamination is the gap containing the symbol 0. We then have

τ(L(f)) =

{
1 + max{j : j ∈ L} if L 6= ∅
0 if L = ∅

As an example, the τ -sequence for the simplified pictograph of Figure 2.3 is 0, 0, 1.

The tree code for a cubic polynomial of length L(f) is a certain sequence of pairs

(k(i), t(i)), where i ranges from 1 to L(f), defined in [DM, §11]. A minimal symbol in

a gap of a lamination in the simplified pictograph of f is the smallest integer in a labelled

gap. The lifetime k(i) is equal to the number of times the symbol j appears as a minimal

symbol in a gap at level i− j − 1, as j ranges from 0 to i− 1. In particular, k(1) = 1. The

terminus t(i) is computed as follows:

(1) Let j(i) be the smallest j which appears at level i − j − 1 but is not a minimal

symbol. If such a j does not exist, then let j(i) = i.

(2) Let m(i) be the minimal symbol at level i − j(i) − 1 in the gap containing j(i).

When j(i) = i, set m(i) = 0.

(3) Let t(i) = i− j(i) +m(i).

As an example, the tree code for the simplified pictograph of Figure 2.3 is (1, 0), (2, 0), (1, 1).

3.2. Examples from Figures 3.1, 3.2, and 3.3. Figure 3.1 shows two simplified pic-

tographs. Using the computation of §3.1, we find their tree codes are

(1, 0), (1, 1), (3, 0), (1, 1), (2, 3)

for the pictograph on the left, and

(1, 0), (1, 1), (3, 0), (1, 1), (1, 3)

for the pictograph on the right. These examples are also presented in [DM, §11]. Since

tree codes characterize cubic trees [DM, Theorem 11.3], this shows their trees are different.

However, the τ -sequence for each simplified pictograph is 0, 1, 0, 1, 0.

Figure 3.2 shows two inequivalent simplified pictographs associated to the same tree. The

tree code for these pictographs is

(1, 0), (1, 1), (1, 2), (4, 0), (1, 1), (1, 2), (3, 4).

The difference in the pictographs is in the relative locations of the first and fourth iterates

of critical point c2 in the lamination at level 2.

Figure 3.3 gives an example of a single simplified pictograph determining exactly two

distinct conjugacy classes. The τ -sequence for this example is 0, 0, 1, 2, 0. Following the

algorithm presented in Theorem 4.1, we first enumerate the marked levels l0 = 0, l1 = 2;

then compute the sums of relative moduli m0 = 0,m1 = 1; then compute t0 = 1, t1 = 1.
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2           0
        1

4           3

0

1          0         3

0

0

2           0
        1

4           3

0

1         0
3

0

0

Figure 3.1. Simplified pictographs associated to two different trees with

the same τ -sequence 0, 1, 0, 1, 0.

The number of conjugacy classes is the maximum of 20/1 and 21/1; therefore there are 2

conjugacy classes determined by this pictograph.

It is not hard to show that these examples are the shortest of their type; that is, any

τ -sequence giving rise to more than one tree must have length ≥ 5; any two pictographs

giving rise to the same tree must have length ≥ 7; any pictograph giving rise to more

than one conjugacy class must have length ≥ 5. Indeed, one can easily compute by hand

all combinatorial possibilities to length 6. An enumeration of all admissible τ -sequences,

simplified pictographs, and (structurally stable) topological conjugacy classes to length 21 is

given in [DS1], implementing an algorithm derived from Theorem 4.1, while an enumeration

of all cubic trees to length 17 was presented in [DM].

4. The counting theorems in degree 3

In this section, we give a more precise statement of Theorem 1.2 in the case of cubic

polynomials. It provides the computation of Top(D), the number of topological conjugacy

classes of basins (f,X(f)) with a given simplified pictograph D in degree 3. The proofs are
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0
  3      1    4
  6      2    5

  2     
0
1
4

               5

            4 

  0           1    

0

0

0

0

0
  3      1    4
  6      2    5

  2     
0
1
4

               5

             

  0           1    

              4

0

0

0

0

Figure 3.2. Inequivalent simplified pictographs associated to the same tree.

The two pictographs differ in the cyclic ordering of the 1 and 4 at level 2

(the third lamination).

given later, in Section 11, after describing the construction of the pictograph in all degrees.

The formulas build upon the expansive treatment of cubic polynomials in [BH1], [BH2] and

the encoding of the cubic trees in [DM]. (The proofs of the theorems also use arguments of

Branner in [Br, Theorem 9.1] and Harris in [Ha].)
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 1            0
 3            2
 4

0

2               

0
2   

0

0

Figure 3.3. Simplified pictograph of length 5 determining exactly two topo-

logical conjugacy classes.

Figure 3.3 shows an example of a simplified pictograph that corresponds to exactly two

toplogical conjugacy classes. We conclude this section with an example of a pictograph cor-

responding to infinitely-many topological conjugacies that organize themselves into exactly

two solenoids in the moduli space M3 of cubic polynomials.

4.1. Computing the number of topological conjugacy classes in degree 3. To state

the two theorems, we need a few more definitions. As in §2.2, we assume that f is a cubic

polynomial with a disconnected Julia set, so at least one critical point lies in the basin

X(f). We label the two critical points of f by c1 and c2 so that Gf (c1) ≥ Gf (c2). Let L(f)

be the length of f , defined as the least integer so that Gf (c2) ≥ Gf (c1)/3
L(f). For each

integer 0 < l ≤ L(f), there is a unique connected component Pl of {z ∈ X(f) : Gf (z) <

Gf (c1)/3
l−1} containing c2. Let Bl ⊂ Pl be the closed subset where Gf (z) ≤ Gf (c1)/3

l.

A marked level is an integer 0 < l < L(f) where the orbit of c2 intersects Bl \ Pl+1. We

remark that this concept appears elsewhere under different names: marked levels are called

semi-critical in [Mi1], and are called off-center in [Br, Theorem 9.1] when the polynomials

f have infinite length. Marked levels can be read from the pictograph, and in fact, from

the underlying τ -sequence; see Lemma 11.4.
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Let

A0 = {z : Gf (c1) < |z| < 3Gf (c1)}
denote the fundamental annulus. For each 0 < n < L(f), denote by An the annular

component of {Gf (c1)/3
n < |z| < Gf (c1)/3

n−1} separating the two critical points (these

are not the fundamental subannuli of §9.1). For each 0 ≤ n < L(f), the relative modulus at

level n is the ratio

m(n) = mod(An)/mod(A0).

The value m(n) is also completely determined by the τ -sequence of f ; in fact, m(n) = 2−k(n),

where k(n) is the number of times the orbit of An surrounds the critical point before landing

on A0.

Theorem 4.1. Suppose D is a degree 3 simplified pictograph with finitely many marked

levels. The number of topological conjugacy classes of basins (f,X(f)) with pictograph D is

Top(D) = max
j

2j

max{ti : i ≤ j}
,

where

(1) the marked levels are indexed as {lj}j≥1, in increasing order;

(2) for each j, we let mj be the sum of the relative moduli
∑lj

l=1m(l); and

(3) tj is the smallest positive integer for which tjmj is integral.

If there are no marked levels, then Top(D) = 1. The computation of Top(D) depends only

on the τ -sequence of D.

The hypothesis of Theorem 4.1 is clearly satisfied for all polynomials in the shift locus,

because their pictographs have finite length. Recall that in that case, by rigidity of X(f),

the holomorphic conjugacy class of a basin (f,X(f)) determines the holomorphic conjugacy

class of the polynomial itself.

In [DS1], an explicit algorithm is developed and implemented using Theorem 4.1 to

enumerate all topological conjugacy classes of a given length in the shift locus of cubic

polynomials. In particular, the algorithm includes an emumeration of all τ -sequences of a

given finite length, followed by the enumeration of all possible pictographs (for structurally

stable polynomials) associated to a given τ -sequence.

4.2. Solenoids. Branner and Hubbard showed there exist examples where the set of poly-

nomials with a given tableau and maximal escape rate forms solenoids in the moduli space

of cubic polynomials containing infinitely many distinct topological conjugacy classes. They

construct the “Fibonacci solenoid” in [BH2], based on the combinatorics of the Fibonacci

numbers. In [Br], Branner proved that there is exactly one (connected) Fibonacci solenoid

in the moduli spaceM3 of cubic polynomials. Here, we explain how to compute the number

of solenoids associated to a given pictograph (from which can be computed the number of

solenoids associated to a given tableau, when combined with [DS1, Theorem 3.1]). We use

the notation of Theorem 4.1.

Theorem 4.2. Suppose D is a degree 3 pictograph with infinitely many marked levels. Then

there are infinitely many topological conjugacy classes of cubic polynomials with pictograph

D. Fixing the maximal critical escape rate M > 0, either
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(a) supj tj =∞ and the conjugacy classes form

Sol(D) = sup
j

2j

max{ti : i ≤ j}

solenoids in the moduli space M3; or

(b) supj tj <∞ and each conjugacy class is homeomorphic to a circle.

The computation of supj tj and Sol(D) depends only on the τ -sequence of D.

4.3. Two-solenoid example. This example is similar to the Fibonacci solenoid of [BH2],

but here we provide a τ -sequence that determines a unique pictograph and exactly two

solenoids in M3. Let l0 = 0, l1 = 2, l2 = 4, and lj = 2lj−1 + 1 for all j > 2. Consider the

τ -sequence given by

0, 0, 1, 2, 0, 1, 2, 3, 4, 0, 1, 2, · · · , 9, 0, 1, 2, · · · , 19, 0, 1, · · · , l5, 0, 1, · · · , l6, 0, 1, · · ·

More precisely, we have

τ(1) = 0

and

τ(n) = n− 2− j − (l1 + l2 + · · ·+ lj)

for j+1+l1+l2+· · ·+lj < n ≤ j+2+l1+l2+· · ·+lj+1. It can be proved inductively that this

sequence determines a unique pictograph; see [DS1, Theorem 3.1]. The first five laminations

of the simplified pictograph (for the truncated τ -sequence 0, 0, 1, 2, 0) are shown in Figure

3.3. The marked levels are given by the sequence {lj : j > 0}. Computing inductively, the

relative moduli sums are m1 = 1, m2 = 3/2, and mj = mj−1 + 1/2 +mj−1/2 for all j > 2.

Therefore t1 = 1, t2 = 2, and tj = 2j−1 for all j. The numbers max{ti : i ≤ j} = 2j−1 are

unbounded, and Theorem 4.2 implies that this τ -sequence determines

lim
j→∞

2j/2j−1 = 2

solenoids in the moduli space M3.

5. Local models and finite laminations

In this section, we first recall and then further develop some notions from [DP2, §4].

A local model surface (X,ω) is a pair consisting of a planar Riemann surface X and

a holomorphic 1-form ω on X that satisfies certain properties. A local model map is a

holomorphic branched cover

(Y, η)→ (X,ω)

between local model surfaces. Local model maps arise as particular restrictions of a polyno-

mial branched cover f : C→ C. Here, we introduce finite laminations and branched covers

of finite laminations as combinatorial representations of local model maps. The main result

of this section is

Theorem 5.1. (1) A local model surface (X,ω) is uniquely determined, up to isomor-

phism, by its associated lamination and the heights of its inner and outer annuli.
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(2) A local model map (Y, η) → (X,ω) is uniquely determined, up to post-composition

by an isomorphism of (X,ω), by the data consisting of the lamination associated to

(Y, η), the heights of its inner and outer annuli of (Y, η), and its degree.

5.1. Local models. A local model surface is a pair (X,ω) consisting of a planar Riemann

surface X and holomorphic 1-form ω on X obtained in the following manner. Begin with a

slit rectangle in the plane

R = {x+ iy : 0 < x < 2π, hmin < y < hmax} \ Σ,

where Σ is a (possibly empty) finite union of vertical slits of the form

Σj = {x+ iy : x = xj , hmin < y ≤ c0}

for a distinguished value of c0 ∈ (hmin, hmax). We think of R as the interior of a polygon.

Each slit defines a pair of sides of this polygon. On the left-hand vertical side of R, the

vertical segment joining the two points hmini and c0i on the imaginary axis is a side, as is the

vertical segment joining c0i and hmaxi. Similarly, on the right-hand vertical side of R, the

vertical segment joining 2π+ hmini and 2π+ c0i is a side, as is the vertical segment joining

2π + c0i and 2π + hmaxi. Given a collection of horizontal translations that identify sides

in pairs, the corresponding quotient space obtained by gluing sides via these translations is

a local model surface. The 1-form ω is then defined by dz in the coordinates on R. The

y-coordinate in the rectangular representation induces a height function h : X → R. The

central leaf LX of the local model surface is the level set {z : h(z) = c0} containing all (if

any) zeros of ω; these are the images of the topmost points of the slits. The complement

X \ LX is a disjoint union of the outer annulus given by the quotient of {c0 < y < hmax}
and finitely many inner annuli given by the quotient of {hmin < y < c0}. For convenience,

we often suppress mention of the 1-form and write simply X for (X,ω).

Note that the rectangular coordinates can be recovered up to a translation from the pair

(X,ω) via integration ϕ(z) =
∫ z
z0
ω, and the height function is given by h(z) = Imϕ(z), up

to the addition of a real constant.

A local model map (or simply a local model) is a branched cover between local model

surfaces

f : (Y, η)→ (X,ω)

such that

η =
1

deg f
f∗ω

and f sends the central leaf of Y to the central leaf of X. In [DP2, Lemma 4.2], we

observed that every local model arises as the restriction of a polynomial branched cover

f : (C, η)→ (C, ω) for a meromorphic 1-form ω having purely imaginary residue at each of

its poles.

An isomorphism of local model surfaces is a degree 1 local model map.

5.2. Finite laminations. Let C be an oriented Riemannian 1-manifold, isometric to R/2πZ
with the standard metric and affine structure. A finite lamination is an equivalence relation

L on C such that

(1) each equivalence class is finite,
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Figure 5.1. A finite lamination with four non-trivial equivalence classes.

(2) all but finitely many classes are trivial (consist only of one element), and

(3) classes are unlinked.

The third condition means that if two pairs of equivalent points {a, b} and {c, d} lie in

distinct equivalence classes, then a and b are in the same connected component of C \{c, d}.
We will deal exclusively with finite laminations, so we henceforth drop the adjective “finite”.

More general types of laminations play a crucial role in the classification of the dynamics

of polynomials; cf. [Th], [Ki1].

A lamination is conveniently represented by a planar lamination diagram, defined as

follows. Given a lamination on the circle C, choose an orientation-preserving, isometric

identification of C with S1 = {z ∈ C : |z| = 1} = ∂D. For each nontrivial equivalence

class, join pairs of points in this class that are consecutive in the cyclic order on C by the

hyperbolic geodesic ending at those points, as in Figure 5.1. Condition (3) that classes are

unlinked guarantees that the hyperbolic geodesics do not intersect.

Two laminations are equivalent if there exists an orientation-preserving isometry (i.e.

rotation) of their underlying circles taking one to the other. Thus, there is no distinguished

marking by angles on the circle C.

Clearly, laminations are determined by their lamination diagrams.

5.3. Laminations and local model surfaces. Let (X,ω) be a local model surface, and

let LX be its central leaf. The 1-form ω induces an orientation and length-function on LX ,

giving it the structure of the quotient of a circle by a finite lamination. Therefore, there is

a uniquely determined finite lamination associated to the local model surface (X,ω).

Lemma 5.2. A finite lamination L determines a local model surface (X,ω), up to the

heights of its inner and outer annuli.

Proof. As we defined in §5.1, a local model surface is determined by its rectangular rep-

resentation. For any values −∞ ≤ hmin < c0 < hmax ≤ ∞, we can construct a surface

(X,ω) from the rectangle {0 < x < 2π, hmin < y < hmax} with central leaf determining the

lamination L. Indeed, choose any point on the circle C to represent the edges {x = 0 = 2π}.
For each point on C in a non-trivial equivalence class, place a vertical slit from the bottom

to height y = c0. Vertical edges leading to points in an equivalence class are paired by

horizontal translation if they are joined by a hyperbolic geodesic in the diagram for L. The

unlinked condition in the definition of the finite lamination guarantees that X is a planar

Riemann surface. The 1-form dz on the rectangle glues up to define the form ω. It is
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Figure 5.2. A degree 3 branched cover of laminations. The three marked

points on the left are sent to the marked point on the right.

immediate to see that the local model surface (X,ω) is determined up to isomorphism, once

the values of hmin, c0, and hmax have been chosen. �

5.4. Branched covers of laminations. See Figure 5.2. If L1 and L2 are finite lamina-

tions, a branched covering δ : L1 → L2 is an orientation-preserving covering map δ : C1 → C2

on their underlying circles such that

(1) δ is affine; i.e. δ(t) = ((deg δ) t+ c) mod 2π where each Ci ' R/2πZ;

(2) for each equivalence class A of L1, the image δ(A) is equal to an (entire) equivalence

class of L2; and

(3) δ is consecutive-preserving.

Consecutive-preserving means that for each equivalence class A of L1, either the image class

δ(A) is trivial, or consecutive points x, y ∈ A (with respect to the cyclic ordering on A) are

sent to consecutive points δ(x), δ(y) in δ(A).

Lemma 5.3. A branched cover of laminations is determined by its domain and degree,

up to symmetries. More precisely, given branched covers δ : L1 → L2 and ρ : M1 → M2

of the same degree, and given an isometry s1 : L1 → M1, there exists a unique isometry

s2 : L2 →M2 such that the diagram

L1
s1 //

δ
��

M1

ρ

��
L2 s2

// M2

commutes.

Proof. The lamination diagram of L2 is determined by L1 and the degree; indeed, the rules

for a branched covering determine the equivalence classes of L2, as the images of those of

L1. By hypothesis, there exists an isometry s1 : L1 → M1 taking equivalence classes to

equivalence classes, and δ and ρ have the same degree. Therefore, there exists an isometry

r2 : L2 →M2.

Note that any branched cover L1 → L2 of degree d is determined by the image of a

single point; this is because, in suitable coordinates, the covering is given by t 7→ d t. Now,

suppose there exists an equivalence class x in L1 such that r2 ◦ δ(x) 6= ρ ◦ s1(x) in M2.
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Combining the above facts, there is a uniquely determined symmetry s : M2 →M2 sending

r2 ◦ δ(x) to ρ ◦ s1(x). We conclude that s ◦ r2 ◦ δ = ρ ◦ s1. Set s2 = s ◦ r2. �

In the proof of Theorem 1.2, we will need to compute orders of rotation symmetry

of certain lamination diagrams and record how these symmetry orders transform under

branched covers.

Lemma 5.4. Let δ : L1 → L2 be a branched cover of laminations of degree d. If L1 has a

rotational symmetry of order k, then L2 has a rotational symmetry of order k/ gcd(k, d).

Proof. Suppose s1 : L1 → L1 is a symmetry of order k, so it rotates the circle underlying

L1 by 2π/k. By Lemma 5.3, there exists a unique rotational symmetry s2 : L2 → L2 so the

diagram

L1
s1 //

δ
��

L1

δ
��

L2 s2
// L2

commutes. Fix coordinates on L1 and L2 so δ(t) = d tmod 2π. As s1 is a translation by

2π/k, it follows that s2 is a translation by 2πd/kmod 2π. Therefore, s2 is a symmetry of

order k/ gcd(k, d). �

5.5. Gaps and local degrees. Suppose L is a finite lamination. For each equivalence class

of L, its hyperbolic convex hull is either empty (if the class consists of a single point), a

hyperbolic geodesic (if the class consists of two points), or an ideal polygon in the disk. Let

L̂ denote the union of these hyperbolic convex hulls. A gap of L is a connected component

G ⊂ D of the complement of L̂. We remark that our terminology conflicts with that of [Th];

when an equivalence class consists of three or more points, we do not consider the ideal

polygon it bounds in the disk as a gap. The ideal boundary ∂G of a gap G is the interior of

G∩S1 in S1. Thus, the ideal boundary ∂G is a maximal open subset of the circle such that

any pair of points in it is unlinked with any pair of points that are equivalent under the

relation defined by L. Given L, it is clear that a gap G is determined by its ideal boundary

∂G, and conversely.

The following lemmas are immediate from the definitions.

Lemma 5.5. Suppose δ : L1 → L2 is a branched cover of laminations and G1 is a gap of

L1. Then there is a unique gap G2 of L2 with ∂G2 = δ(∂G1). In other words, δ takes the

closure of the ideal boundary of a gap surjectively to the closure of the ideal boundary of a

gap.

Note that δ need not take the ideal boundary of a gap onto the ideal boundary of a gap.

An example is shown in Figure 5.2.

Lemma 5.5 shows that a branched cover δ : L1 → L2 induces a function from ideal

boundaries of gaps of L1 to ideal boundaries of gaps of L2. Since gaps are determined by

their boundaries, δ induces a function from gaps of L1 to gaps of L2. If G is a gap of L1,

we denote the gap of L2 to which it corresponds under δ by δG. We call δG the image of

G under δ–even though we have not extended δ over D. Below, by topological degree of a

map, we mean the maximum cardinality of a fiber.
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Lemma 5.6 (and definition). Suppose δ : L1 → L2 is a branched cover of laminations, and

G is a gap of L1. The local degree of δ at G is defined as

deg(δ,G) =
deg(δ)|G|
|δG|

,

where |G| is the length of ∂G. The quantity deg(δ,G) is a positive integer which coincides

with the topological degree of the restriction δ|∂G.

Lemma 5.7 (and definition). Suppose δ : L1 → L2 is a branched cover of laminations, and

A is an equivalence class of L1. The local degree of δ at A is defined as

deg(δ, A) =
#A

#δ(A)
.

The quantity deg(δ, A) is a positive integer and coincides with the topological degree of the

restriction δ|A.

5.6. Critical points of a lamination branched cover. Suppose δ : L1 → L2 is a

branched cover of laminations. A gap G of L1 we call critical if deg(δ,G) > 1. Similarly,

an equivalence class A of L1 we call critical if deg(δ, A) > 1. Abusing terminology, we refer

to critical gaps and critical equivalence classes as critical points of δ.

Lemma 5.8. The total number of critical points of a branched cover δ, computed by∑
classes A

(deg(δ, A)− 1) +
∑

gaps G

(deg(δ,G)− 1),

is equal to deg δ − 1.

Proof. By collapsing equivalence classes to points, a lamination determines, and is deter-

mined by, a planar, tree-like 1-complex with a length metric of total length 2π. Tree-like

means that it is the boundary of the unique unbounded component of its complement. A

branched covering determines, and is determined up to equivalence by, a locally isometric

branched covering map between such complexes which extends to a planar branched cov-

ering in a neighborhood. This lemma therefore follows from the usual Riemann-Hurwitz

formula. �

5.7. Branched covers of laminations and local models. Let f : (Y, η)→ (X,ω) be a

local model map. Let LY and LX denote the finite laminations associated to the central

leaves of Y and X. It is immediate to see that f induces a branched cover of laminations

LY → LX .

Conversely, we have:

Lemma 5.9. A branched cover of finite laminations δ : L1 → L2 determines a local model

map, up to the heights of the inner and outer annuli of the local model surfaces.

Proof. Let δ : L1 → L2 be a branched cover of laminations of degree k. By Lemma 5.2,

we may construct, for each i = 1, 2, a local model surface (Xi, ωi) so that its central leaf is

identified with the lamination Li; we may choose the heights of the inner and outer annuli

to be hmin = −∞ and hmax = +∞ for i = 1, 2. Because the height function is fixed,

up to an additive constant, the surface (Xi, ωi) is uniquely determined. By choosing both
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hmin and hmax to be infinite, each inner annulus (Xi, ωi) is isomorphic to the punctured

disk {0 < |z| < 1} equipped with the 1-form ri dz/z, where r > 0 is the length of the

corresponding gap in Li, while the outer annulus of (Xi, ωi) is isomorphic to the punctured

disk {1 < |z| <∞} equipped with the 1-form i dz/z.

In these punctured-disk local coordinates, we extend δ by zk, sending the outer annulus

of X1 to that of X2. For each gap G of L1, we extend δ by zdeg(δ,G) in its punctured-disk

coordinates. The local degree deg(δ,G) is well-defined by Lemma 5.6, and the extension is

well-defined by Lemma 5.5. By construction, we obtain a branched cover f : (X1, ω1) →
(X2, ω2) of degree k such that f∗ω2 = k ω1 and f induces the lamination branched cover

δ : L1 → L2.

Note that finite choices of heights hmin and hmax give rise to local model maps that

are restrictions of the constructed f . In this case, there is a compatibility condition on

the heights: if an annulus has finite modulus m, then any degree k cover is an annulus

of modulus m/k. If the domain surface (X1, ω1) has central leaf at height h0 ∈ R, and

hmin = h−1 and hmax = h1, then the image surface (X2, ω2) will have outer annulus of

height k(h1 − h0) and inner annuli of height k(h0 − h−1). �

5.8. Proof of Theorem 5.1. The first conclusion is the content of Lemma 5.3. More

functorially, an isometry between local model surfaces is determined by its restriction to

the corresponding central leaves, so in particular the group of isometric symmetries of a

local model surface is faithfully represented by the group of symmetries of its lamination.

More generally, since a branched cover (Y, η) → (X,ω) in local Euclidean coordinates has

differential a multiple of the identity, it is also determined by its restriction to the associated

central leaves. The second conclusion then follows from Lemma 5.9. �

6. Polynomial trees

Suppose f is a polynomial and X(f) its basin of infinity. By collapsing components of

level sets of the Green’s function Gf : X(f)→ (0,∞) to points, we obtain a quotient map

X(f) → T (f) from X(f) onto a T (f) that yields a semiconjugacy from the holomorphic

map f : X(f) → X(f) to a map F : T (f) → T (f) . The tree T (f) inherits both a length

metric structure and a simplicial structure. Metrically, F expands each edge of T (f) by the

constant factor d. Combinatorially, F is simplicial, i.e., maps edges homeomorphically to

edges.

Abstract simplicial tree-maps (F, T ) were defined in [DM], and those arising from poly-

nomials were characterized. In this section, we first recall these results in more detail, and

then develop them further. We introduce the spine S(T ) of (F, T ), which is a certain subtree

of T . The portion of the spine of (F, T ) below the maximal escape-rate is a finite subtree

if and only if the corresponding polynomial lies in the shift locus.

The main result, Proposition 6.2, asserts that a polynomial tree (F, T ) is determined by

a much simpler piece of data that we call spine star return data. Roughly (but not exactly),

this data takes the form of the first-return map of a unit neighborhood of the spine to itself.

The precise statement is given in §6.6. The concepts of spines and related return maps will
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be used twice more: in the discussion of trees of local models in §7.4, and in the definition

of the pictograph §10.1.

6.1. The metrized polynomial tree. Fix a polynomial f : C → C of degree d ≥ 2.

Assume that at least one critical point of f lies in the basin of infinity X(f), so that its

filled Julia set K(f) = C \X(f) is not connected. Recall that the escape-rate function is

defined by

(6.1) Gf (z) = lim
n→∞

1

dn
log+ |fn(z)|;

it is positive and harmonic on the basin X(f). The tree T (f) is the quotient of X(f)

obtained by collapsing each connected component of a level set of Gf to a point.

There is a unique locally-finite simplicial structure on T (f) such that the set of vertices

of T (f) coincides under the projection πf : X(f)→ T (f) with the set of grand orbits of the

critical points of f in X(f). The polynomial f then induces a simplicial branched covering

F : T (f)→ T (f)

of degree d.

The function Gf descends to the height function

hf : T (f)→ R+.

The height function induces a height metric on T (f). This is a length metric, and it is

determined by the following property: given adjacent vertices v and w, the length of the

unique edge joining them is |hf (v)− hf (w)|.
Let E(f) be the set of edges in T (f) and V (f) the set of vertices in T (f). Under the

projection πf : X(f)→ T (f), the preimage of each open edge e is an open annulus Ae, and

the preimage of each vertex v, denoted Lv, is homeomorphic to the underlying space of a

finite graph. The topological degree (defined here as the maximum cardinality of a point

in a fiber) of the restriction of f to Ae and to Lv defines the degree function

degf : E(f) ∪ V (f)→ N

of the tree (F, T (f)). The degree of any vertex v is then the degree of the unique edge

incident to and above v, and is also equal to the sum of the degrees of the edges incident

to and below v.

6.2. Fundamental edges and vertices. In this paragraph, we introduce some terminol-

ogy and notation that will be employed throughout the paper. Let v0 denote the highest

vertex of valence > 2, and let v1, v2, . . . , vN := F (v0) be the consecutive vertices above v0
in increasing height; we refer to v0, . . . , vN−1 as the fundamental vertices and the edges ei
joining vi−1 and vi, i = 1, . . . , N , as fundamental edges. Note that the union of the fun-

damental edges and fundamental vertices is a fundamental domain for the action of F on

T (f).

The number N of fundamental edges coincides with the number N(f) of independent

critical escape rates of a polynomial f , appearing in the statement of Theorems 1.3 and 1.4.

The definition of N(f) was given in §2.1.
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6.3. The Julia set and weights. Being a non-compact topological space, T (f) has ends,

and is compactified by its end-point compactification which adds a point for each end. One

end, determined by the loci {hf > t} for t→∞, is isolated and corresponds to the point at

infinity in the dynamical plane of f . The other ends correspond to connected components

of the filled-in Julia set K(f) of f . The Julia set J(F ) of the tree (F, T (f)) is the set of

ends at height 0; equivalently, it is the metric boundary of the incomplete length metric

space determined by hf as in the previous subsection. We let T (f) = T (f) ∪ J(F ). The

quotient map X(f) → T (f) extends continuously to C → T (f), collapsing each connected

component of K(f) to a point of J(F ). In [DM], a probability measure µF on the Julia

set of F is constructed which coincides with the pushforward of the measure of maximal

entropy for a polynomial under the natural projection K(f)→ J(F ).

As in §6.2, let v0 be the highest branching vertex in T (f). Suppose v is a vertex below

v0. The level l(v) of v is the least integer l ≥ 0 so that h(F l(v)) ≥ h(v0); this implies that

F l(v)(l(v)) = vj is a fundamental vertex for some j ∈ {0, . . . , N − 1}. There is a unique

connected component of the locus {hf ≤ hf (v)} containing v; it is a subtree of T (F ), the

subtree below v. The ends of this subtree (equivalently, its metric completion) is the Julia

set below v, denoted Jv(F ).

The measure µF is constructed by setting

(6.2) µF (Jv(F )) =
deg(v) deg(F (v)) · · · deg(F l(v)−1(v))

dl(v)
.

We refer to this quantity µF (Jv(F )) as the weight of the vertex v; it will be used in §7 in

the construction of the tree of local models.

The numerator in (6.2) admits the following interpretation which will be used later. For

any edge e below v0, let Ae be the annulus in X(f) over e. If e is the edge above and

adjacent to vertex v, then the ratio of moduli

(6.3) mod(Ae)/mod(Aej )

is the reciprocal of the numerator in (6.2), where ej is the unique fundamental edge in the

orbit of e. This ratio in (6.3) is called the relative modulus of the annulus Ae.

6.4. Example: degree 2. Trees in degree 2 are very simple to describe; up to scaling of

the height metric, there is only one possibility. Let fc(z) = z2 + c, and assume that c is not

in the Mandelbrot set, so the Julia set J(fc) is a Cantor set. The level sets of the escape-

rate function Gc break the plane into a dyadic tree. That is, for each h > Gc(0), the level

curve {Gc = h} is a smooth topological circle, mapping by fc as a degree 2 covering to its

image curve {Gc = 2h}; the level set {Gc = Gc(0)} is a “figure 8”, with the crossing point

at 0. Each bounded complementary component of the figure 8 maps homeomorphically by

fc to its image; there are thus copies of the figure 8 nested in each bounded component.

Consequently, level curves {Gc = Gc(0)/2n} are unions of figure 8’s for all positive integers

n; all other connected components of level curves in X(fc) are topological circles. See Figure

6.1.

The tree T (fc) has a unique highest branch point v0; its height is h(v0) = Gc(0), and all

vertices below v0 have valence 3. The action of F : T (fc)→ T (fc) is uniquely determined,

up to conjugacy, by the condition that h(F (v)) = 2h(v) for every vertex v and that F takes
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Figure 6.1. Critical level sets of the Green’s function Gf and part of the

tree T (f) associated to a quadratic polynomial f with disconnected Julia set

(from [DM, Figure 1]).

open sets to open sets. Thus, the pair (F, T (fc)) is completely determined by the height of

the highest branch point, Gc(0).

6.5. Polynomial type trees. In [DM], it is established that these polynomial tree systems

(F, T (f)) are characterized by a certain collection of axioms, and may be endowed with some

additional natural metric structures.

Axioms. By a tree T , we mean a locally finite, connected, 1-dimensional simplicial complex

without cycles. Denote the set of edges of T by E and the set of vertices by V . For a given

vertex v ∈ V , let Ev denote the set of edges adjacent to v. Given a tree T and a simplicial

map F : T → T , we say (F, T ) is of polynomial type if the following conditions hold.

(1) T has no endpoints (vertices of valence 1);

(2) T has a unique isolated end (in the end-point compactification of T )

(3) F is proper, open, and continuous;

(4) the grand orbit of any vertex includes a vertex of valence ≥ 3, where x, y ∈ T lie in

the same grand orbit if Fm(x) = Fn(y) for some positive integers m,n; and

(5) there exists a local degree function deg : E ∪ V → N for F , satisfying the following

conditions:

(a) for each vertex v,

(6.4) 2 deg(v)− 2 ≥
∑
e∈Ev

(deg(e)− 1),

and

(b) for each vertex v and each edge e′ adjacent to v,

deg(v) =
∑

e∈Ev , F (e)=F (e′)

deg(e).

Condition (4) implies that the simplicial structure on T is determined by the dynamics:

without this, one could add “artifical” vertices by e.g. subdividing every edge into two

pieces. It follows from the axioms that the topological degree of F is well defined and finite,

and it satisfies

degF = max
v∈V

deg v.
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Further, it is proved in [DM] that the degree function for (F, T ) is unique.

Stars. Given a vertex v ∈ V , its star, Tv, is the union of half-open edges [v, w) with w

incident to v. Thus Tv is the open unit neighborhood of v in T when T is equipped with a

length-metric giving each edge length 1. We denote by T v the closed star; it thus consists

of the union of closed edges [v, w] with w incident to v.

Critical points and critical ends. A vertex v is a critical point of (F, T ) if we have strict

inequality in the relation (6.4). An end of T is critical if it there exists a sequence of vertices

of degree > 1 exiting via (and thus converging to) this end. There are at most d− 1 critical

points and ends, counted with multiplicity, and there is at least one critical point in the

grand orbit of every vertex. Note that if T = T (f), a vertex is critical if and only if it is

the image under the projection πf : X(f)→ T (f) of a critical point of f ; an end is critical

if and only if there is a critical point of f in the corresponding component of the filled-in

Julia set of f .

Realization. Theorem 7.1 of [DM] states that if (F, T ) is of polynomial type, then there

exists a polynomial f of degree degF and a monotone map X(f) → T giving a semicon-

jugacy from f : X(f) → X(f) to F : T → T . Each critical vertex of (F, T ) is the image

of a critical point of f . We sketch the proof of this realization theorem below in §6.8. A

polynomial f lies in the shift locus if and only if (F, T ) has no critical ends.

Henceforth, we consider only tree-dynamics (F, T ) of polynomial type.

Height metrics. Any tree of polynomial type (F, T ) can be endowed with a height metric dh.

This is a length metric, and is determined by the following property. Each edge e is isometric

to a Euclidean interval; we denote by |e| its length. We require |e| = |F (e)|/(degF ). There

is a finite-dimensional space of possible height metrics, parameterized by the lengths of

fundamental edges. Each height metric induces a height function

h : T → R+

where h(x) is the distance from x to the set of non-isolated ends (the Julia set of F );

it satisfies h(F (x)) = (degF )h(x). The distance function can be recovered from h by

dh(v, w) = |h(v)−h(w)| on adjacent vertices. When equipped with a height metric, we refer

to the triple (F, T, h) as a metrized polynomial tree. The realization theorem of [DM] states

further that every metrized polynomial tree (F, T, h) arises from a polynomial f : C → C
of degree degF with h as the height function hf induced by Gf .

Compatible critical heights. Set d = deg(F ). A height function is uniquely determined by

either one of two pieces of data: (i) assigning positive lengths to the fundamental edges

e1, . . . , eN , and then propagating to other edges via the functional equation |e| = |F (e)|/d,

or (ii) by a list of d − 1 compatible critical heights h1 ≥ h2 ≥ . . . ≥ hd−1 ≥ 0. Recall

that a critical point c of T is either a critical vertex or a critical end, and that there are

d− 1 critical points, c1, . . . , cd−1, counted with multiplicity. The height of a critical end is

defined to be zero. The highest branching vertex v0 is a critical vertex; by definition, h1 is
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its height. If ci, cj are critical points with heights hi, hj > 0, and ci, cj are in the same grand

orbit, so that F l(ci) = F l(cj) = vk for some fundamental vertex vk, k ∈ {0, . . . , N − 1}, then

the heights hi, hj must satisfy dl(ci)hi = dl(cj)hj in order to be compatible. This common

value will be the height of the fundamental vertex vk. Thus from compatible critical heights

one recovers the heights of fundamental vertices, hence lengths of fundamental edges, and

hence the height function h : T → (0,∞). We have shown

Proposition 6.1. Suppose T has N ≥ 1 fundamental edges. The set of compatible critical

heights (h1, . . . , hd−1) ∈ [0,∞)d−1, with h1 ≥ · · · ≥ hd−1, is homeomorphic to an open

N -dimensional simplex.

6.6. The spine of the tree. Suppose (F, T ) is of polynomial type. Here, we need only

the simplicial structure of T . The spine S(T ) of a tree (F, T ) is the convex hull of its

critical points and critical ends (including ∞). In other words, it is the connected subtree

consisting of all edges and vertices with degree larger than 1. For example, in degree 2,

S(T ) includes the highest branching vertex and the ray leading to infinity. In Figure 6.1,

this is the upward-pointing ray starting at the segment labelled “2”. We denote by S1(T )

the closed unit simplicial neighborhood of the spine, regarded as a subtree of T . Thus S1(T )

consists of all edges with at least one vertex in the spine.

For a vertex v in the spine S(T ), its first return-time is r(v) := min{i > 0 : F i(v) ∈ S(T )}.
The first-return map of the spine is R : S(T )→ S(T ) is defined by R(v) := F r(v)(v).

Proposition 6.2. A polynomial tree (F, T ) is determined by the triple consisting of: the

subtree S1(T ), the return-map R : S(T )→ S(T ), and the spine star return data

(6.5)
{
Rv := (F r(v) : T v → TR(v)) | v ∈ S(T )

}
.

In other words, the tree T and the self-map F : T → T may be reconstructed from a priori

a much smaller amount of information.

The proof of Proposition 6.2 is by induction on descending height. The spirit of this argu-

ment will be used to establish Propositions 7.2, Proposition 7.3, Lemma 8.4, and Proposition

10.2. Proposition 6.2 in the case of degree 3 polynomial trees is covered by [DM, Theorem

11.3].

Proof of Proposition 6.2. Suppose we are given the spine star return data (6.5). We first

observe that we can reconstruct the following invariants.

(1) The end corresponding to ∞. To see this: note first that sequences of the form

limn→∞R
n(v) all converge to a unique end of S(T ), which we denote by ∞.

(2) A partial order, <. We say v < w if w separates v from ∞.

(3) The fundamental vertices, v0, v1, . . . , vN . The vertex v0 is the unique smallest vertex

(with respect to the partial order <) separating every other vertex of valence at least

3 from∞. Let N be the combinatorial distance in S(T ) between v0 and vN := R(v0).

Then proceeding from v0 up to vN we encounter v0, v1, . . . , vN .

(4) A simplicial depth function depth on S(T ). Let d be the combinatorial distance in

the simplicial complex S(T ). For v < v0, we set depth(v) := −d(v, v0); for v > v0,

we set depth(v) := d(v0, v). Thus depth(v0) = 0, depth(vi) = i for i = 1, . . . , N ,

and depth(v) = −1 for each vertex v ∈ S1(T ) immediately below v0.
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(5) The first-return times, r(v), for vertices v ∈ S(T ). To see this, note that given

v ∈ S(T ) we have r(v) = (depth(R(v))− depth(v))/N .

It suffices to show that the tree T and map F can be reconstructed from the given data,

since the local degree function is uniquely determined by the pair (F, T ) [DM, Theorem

2.9].

On the infinite vertical ray [v0,∞) ⊂ S(T ), we have F = R, so the spine star return data

determines F on the forward-invariant ray [0,∞).

We now argue by induction on descending n := |depth(v)|. We will inductively construct

the tree T and the map F : T → T . At the inductive step, we are in the following setup.

• We have a vertex v of the tree T with n = depth(v).

• We have determined the image w = F (v) (indeed, we have determined F on the

infinite vertical ray above v).

• Since depth(v) < depth(w), by the inductive hypothesis, we know the star Tw.

• We must construct the portion of the star T v below v, and must extend F over this

portion to complete the definition of the restriction Fv : T v → Tw.

There are two cases.

(1) If v 6∈ S(T ), we define T v to be a homeomorphic copy of Tw, and we extend

arbitrarily so that Fv : T v → Tw is a simplicial homeomorphism.

(2) If v ∈ S(T ), put y := R(v). By assumption, we are given the data of the map Rv :

T v → T y. If r(v) = 1 then we are done. Otherwise: by the inductive hypothesis, we

know the map F r(v)−1 : Tw → T y. Since R is a first-return map, we know F r(v)−1 :

Tw → T y is a homeomorphism. We define F : T v → Tw by (F r(v)−1)−1 ◦Rv.
We use the above construction to extend F to all vertices v with depth(v) = −n. We

then proceed to vertices v for which depth(v) = −(n + 1). Induction on n completes the

proof. �

6.7. Remark: cubic polynomials and the spine. A polynomial tree dynamical system

(F, T ), is not determined by the first-return map on the spine S(T ) alone. In fact, in the

case of cubic polynomial trees, the data of the first return to S(T ) is equivalent to the data

of the Branner-Hubbard tableau (or the Yoccoz τ -sequence). Examples of distinct cubic

trees with the same tableau were presented in [DM] and here in Section 3, Figure 3.1.

6.8. Realization of trees, a review. In this subsection, we give an overview of the proof

of [DM, Theorem 1.2], the realization theorem for trees. This construction motivated the

definition of trees of local models, which will be introduced in Section 7.

Suppose (F, T ) is of polynomial-type of degree d. We first assume (F, T ) has no critical

ends; we will produce a corresponding polynomial in the shift locus. As in §6.5, choose

a height metric for (T, F ) and let h be the corresponding height function. The absence

of critical ends implies that the heights of critical vertices are uniformly bounded below

away from zero. In particular, on the portion of the tree below some positive height, F

is a local homeomorphism. A polynomial in the shift locus with metrized tree (F, T, h)

is then constructed as follows. Recall from §6.2 the definition of the fundamental vertices

v0, . . . , vN−1, where v0 is the highest vertex of valence at least 3.
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(1) Inflate the vertices above v0. At each vertex v1, v2, v3 . . . above v0, let (Xvi , ωvi)

be a local model surface “modelled on” the vertex vi in T . As each such vertex

has valence 2, the surface Xvi is an annulus, and the moduli of its inner and outer

annuli are determined by the height function h.

(2) Local realization. Inductively on descending height we choose, for each vertex v

with h(v) ≤ h(v0), a local model map

(Xv, ωv)→ (XF (v), ωF (v))

“modelled on” F at v. The condition (5) on local degrees in §6.5 guarantees the

existence of such a local model. The result of this step is a collection of local model

maps, indexed by the vertices of T ; the domain Xv of each is equipped with a natural

projection to the open star Tv.

(3) Glue. Over each edge of T , say joining v to v′ above it, glue the outer annulus of

Xv with the corresponding inner annulus of v′ so that the local model maps extend

holomorphically (we do this more formally in §7.5 below). After gluing over all edges,

we obtain a proper degree d holomorphic map f : X → X from a planar Riemann

surface X to itself, d − 1 critical points of f in X (counted with multiplicity), and

height map h : X → (0,∞) with h(f(x)) = dh(x).

By uniformization, X lies in the Riemann sphere. The assumption that F : T → T has no

critical ends implies that each end of X is surrounded by a concentric sequence of annuli

for which the sum of the moduli diverges. It follows that X is rigid as a Riemann surface

([Mc, §2.8], [AS, §IV.4]). Hence f extends uniquely to a polynomial whose basin dynamics

(f,X(f)) is isomorphic to (f,X). By construction, the metric tree dynamics (F, T (f), hf )

of the polynomial f is isomorphic to that of the given metric tree (F, T, h).

A general metrized polynomial tree is realized by a compactness and continuity argument.

There is a dynamical Gromov-Hausdorff topology on the set of metric trees: (F1, T1, h1)

is close to (F2, T2, h2) if there is a relation between T1, T2 which is close to an isometry

and close to a conjugacy on a very large compact subset. With this topology, the map

f 7→ (F, T (f), hf ) is continuous, and the image of the shift locus – namely, trees without

critical ends in its Julia set – is dense. The locus of maps f for which the critical heights

are less than some given constant is known to be compact. Given an arbitrary (F, T, h), we

approximate it by trees corresponding to the shift locus (Fn, Tn, hn) → (F, T, h), and we

construct realizations fn of (Fn, Tn, hn). An accumulation point f of (fn)n realizes (F, T, h).

7. The tree of local models

Suppose f is a polynomial. Recall from §1.1 that the basin dynamics f : X(f) → X(f)

fits naturally into a sequence of dynamical systems

X (f)

F
		 gf // X(f)

f

		 πf //

Gf

44T (f)

F

		 hf // (0,∞)

·d
		
.
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where the gluing quotient map gf depends on f . In this section, we introduce more formally

the tree of local models (F ,X (f)). We axiomatize its properties, introduce abstract trees

of local models, and show:

Theorem 7.1. Every abstract tree of local models (F ,X ) arises from a polynomial basin

(f,X(f)).

The proof is similar to the realization of abstract polynomial trees in [DM], outlined in §6.8.

As with polynomial trees (Proposition 6.2), we define the spine (R,S) of the tree of local

models (F ,X ) and prove:

Proposition 7.2. A tree of local models (F ,X ) is uniquely determined by its first-return

map on its spine (R,S).

Proposition 7.3. A tree of local models (F ,X ) and a gluing along its spine (R,S) deter-

mines uniquely a basin dynamical system (f,X(f)).

While the basin dynamical system (f,X(f)) in Proposition 7.3 is unique up to conformal

conjugacy, the polynomial f is not, due to e.g. renormalizations associated to periodic filled

Julia components.

7.1. The tree of local models associated to a polynomial. Let f be a polynomial of

degree d with disconnected Julia set, Gf its escape-rate function, and ω its holomorphic

1-form. Recall from §2.1 that each level curve {z ∈ X(f) : Gf (z) = c} has length 2π in the

metric |ω|. In particular, the metric |ωf |, when restricted to connected components of level

sets of Gf , coincides with the length function induced by external angles.

Form the metrized polynomial tree (F, T (f), hf ) as in §6.1. Consider the projection

πf : X(f) → T (f) from the basin of infinity to the tree. For each vertex v ∈ T (f), let Xv

be the preimage in X(f) of the open star Tv, and set

ωv =
1

µF (Jv(F ))
ω =

2i dl(v)

deg(f l(v)|Xv)
∂Gf ,

where the weight µF (Jv(F )) was defined in equation (6.2). Then the pair (Xv, ωv) forms a

local model surface, where each horizontal leaf of ωv is the fiber over a point in Tv, and the

central leaf is the fiber over v. The scale factor normalization of ωv is chosen so that the

central leaf and boundary of outer annulus of Xv have length 2π in the metric |ωv|.
The restriction of the polynomial f |Xv defines a local model map

fv : (Xv, ωv)→ (XF (v), ωF (v)).

Indeed, the level l(v) satisfies l(F (v)) = l(v)− 1 whenever l(v) > 0, so

ωv =
dl(v)

deg(f l(v)|Xv)

1

d
f∗ω =

dl(F (v))

deg(f |Xv) deg(f l(F (v))|XF (v))
f∗ω =

1

deg(f |Xv)
f∗ωF (v),

as required for a local model map. For each v, the restriction πv := πf |Xv : Xv → Tv ⊂ T (f)

gives a projection to the open star Tv of v in T (f); it collapses the horizontal leaves of the

foliation on Xv to points.
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Now let

X (f) :=
⊔
v∈V

(Xv, ωv)

be the disjoint union of the Xv’s equipped with the 1-forms ωv, and define

F(f) : X (f)→ X (f)

by settting F|Xv := fv. Thus F : X (f)→ X (f) defines a holomorphic dynamical system on

a disconnected complex 1-manifold with countably infinitely many components, equipped

with a holomorphic 1-form. Metrically, F locally expands lengths on Xv by the factor

deg(v). The collection of projections {πv : Xv → Tv}v∈V then determine a projection

π : X (f) → T (f) that gives a semiconjugacy from F : X (f) → X (f) to F : T (f) → T (f).

The composition hf ◦ π : X (f) → [0,∞) gives a height function on X (f). The inclusion

Xv ↪→ X(f) induces a holomorphic, generically two-to-one gluing quotient map

gf : X (f)→ X(f).

In summary: we obtain the following diagram of semiconjugacies:

X (f)

F
		 gf // X(f)

f

		 πf //

Gf

44T (f)

F

		 hf // (0,∞)

·d
		
.

The tree of local models associated to f is described globally simply by forgetting the

gluing quotient map gf in the above diagram. That is, we record the data

X (f)

F
		

π // T (f)

F

		 hf // (0,∞)

·d
		
.

More formally and locally described: the tree of local models associated to f is the data

consisting of (i) the tree (F, T (f), hf ), and (ii) the collection of triples {fv, (Xv, ωv), πv}v∈V .

7.2. The tree of local models, defined abstractly. We now consider abstract trees of

local models. Let (F, T, h) be an abstract metrized polynomial tree. For a vertex v, let

Tv denote the open star of v. A tree of local models over (F, T, h) is (i) the metrized tree

(F, T, h), and (ii) a collection of triples {(fv, (Xv, ωv), πv) : v ∈ V }, indexed by the vertices

v of T , such that for each vertex v,

(1) the pair (Xv, ωv) is a local model surface which is “modelled on” the open star Tv.

Specifically, there exists a marking homeomorphism

πv : T (Xv, ωv)→ Tv

from the quotient tree of (Xv, ωv), obtained by collapsing the leaves of the horizontal

foliation of ωv to points, to the open star Tv. We require further that πv is an

isometry from the induced metric µF (Jv(F )) |ωv| on T (Xv, ωv) to the height metric

on Tv, where µF (Jv(F )) is the weight of v, defined in equation (6.2).
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(2) the map

fv : (Xv, ωv)→ (XF (v), ωF (v))

is a local model map which is “modelled on” F at v. Specifically, via the marking

homeomorphisms πv and πF (v), the restriction F : Tv → TF (v) is the quotient of fv,

and the local degree function on Tv coincides with the local degree of fv on leaves.

By condition (1), the heights of the inner and outer annuli in Xv are controlled by the

metric on (F, T, h). By condition (2), the widths of these annuli are also controlled, and

therefore the moduli are determined. In fact, the moduli coincide with the lengths of edges

of (F, T, h) in the modulus metric of [DM].

Suppose {(fv, (Xv, ωv), πv) : v ∈ V } is a tree of local models over a polynomial tree

(F, T, h). As in §7.1 we let

X :=
⊔
v∈V

(Xv, ωv)

be the disjoint union of the Xv’s and define

F : X → X

by settting F|Xv := fv. Thus F : X → X defines a holomorphic dynamical system on a

disconnected complex 1-manifold with countably infinitely many components. The 1-forms

ωv define a conformal metric |ωv| on each Xv (with singularities at the zeros of ωv). On

each local model surface Xv, the holomorphic map F scales this metric by the factor deg(v).

The collection of projections πv : Xv → Tv ⊂ T then determine a projection π : X → T . In

summary, a tree of local models over a polynomial tree (F, T, h) is defined globally by the

data of

X

F

��
π // T

F

��
h // (0,∞)

·d
		
.

7.3. Equivalence and automorphisms of trees of local models. A tree of local models

F1 : X1 → X1 is equivalent to the tree of local models F2 : X2 → X2 if there exists a

holomorphic isometry

i : X1 → X2

which induces a conjugacy

F2 ◦ i = i ◦ F1

while respecting the underlying tree structure. That is, the isometry i projects, via the

marking homeomorphisms, to an isometry of polynomial trees,

i : T1 → T2

which conjugates the tree dynamics of F1 to that of F2.

In particular, an automorphism of a tree of local models F : X → X is a holomorphic

isometry X → X which induces an isometry of the underlying tree T → T and commutes

with F .
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7.4. The spine of the tree of local models. Fix a tree of local models (F ,X ), and let

(F, T ) be the underlying polynomial tree. Recall that the spine S(T ) of (F, T ) is the convex

hull of all critical points and critical ends (including∞) in T . The spine S of X is the subset

of X lying over the spine S(T ) of the tree. We let R : S → S denote the first-return map to

the spine S of (F ,X ); for each vertex v ∈ S(T ), it is defined by R|Xv = Fr(v) : Xv → XF r(v)

where r(v) = min{i > 0 : F i(v) ∈ S(T )} as defined in §6.6. Unlike the first-return map

we consider for (F, T ), defined in §6.6, we do not thicken the spine to the unit simplicial-

neighborhood S1(T ). Note now that R : S → S is a holomorphic dynamical system; in

particular, it is continuous and, in the natural Euclidean coordinates from the 1-form, is a

homothety with scaling factor deg(v) away from singular points.

We now prove that (F ,X ) is uniquely determined by the first-return map (R,S). The

proof proceeds along exactly the same lines as the proof of Proposition 6.2.

Proof of Proposition 7.2. The first observation is that the underlying metrized-tree dynamics

(F, T, h) can be recovered from the first-return map (R,S). Indeed, the local model surface

over any vertex v ∈ S(T ) collapses to the star of v (and determines the metric, locally).

Thus, the spine S of X determines the unit simplicial-neighborhood S1(T ), and the first-

return map R : S → S determines a return map R1 : S1(T )→ S1(T ). Strictly speaking, R1

is not the first return on S1(T ) defined in §6.6, but rather, the first return from the spine

to itself, together with the action on stars. Applying the proof of Proposition 6.2, we are

able to recover the full tree dynamical system (F, T ).

As in the proof of Proposition 6.2, we reconstruct (F ,X ) from (R,S) inductively on

descending height. We begin with vertices v in the spine and use R to reconstruct F on

the local model surface over v. All other vertices have degree 1, so the map F and surface

X are uniquely determined. �

7.5. The gluing quotient map. Suppose f is a polynomial and (f,X(f)) is its basin

dynamical system. For each vertex v ∈ T (f), there is an inclusion Xv(f) ↪→ X(f). The

totality of these inclusions define a canonical semiconjugacy (F ,X (f))→ (f,X(f)) between

the dynamics F on the tree of local models X (f) induced by f and that of f on its basin

X(f). If v and v′ are incident, with v′ above v, the inclusions Xv(f) ↪→ X(f) and Xv′(f) ↪→
X(f) have the property that the image of the outer annulus of Xv(f) coincides with that

of the inner annulus of Xv′(f). The composition of the first with the inverse of the second

gives a conformal isomorphism between these annuli.

We conclude that a polynomial determines

(1) a gluing: a collection

ιf = {ιfe}e∈E
of conformal isomorphisms ιfe from the outer annulus of Xv(f) to the corresponding

inner annulus of v′ commuting with F(f), one for each edge e of the tree T (f), and

(2) a corresponding gluing quotient map

gf : X (f)→ X(f).

Note that an isomorphism (f,X(f))→ (g,X(g)) lifts under the gluing quotient maps to an

isomorphism (F(f),X (f))→ (F(g),X (g)).
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Conversely, given an abstract tree of local models (F ,X ), one may consider abstract

gluings as well. An (abstract) gluing is a collection ι = {ιe}e∈E of conformal isomorphisms

ιe from the outer annulus of Xv to the corresponding inner annulus of v′ commuting with

F , where v and v′ are joined by an edge e. An abstract gluing ι defines a gluing quotient

map X → X/ι = Xι to an abstract planar Riemann surface to which the dynamics of F
descends to yield a proper degree d holomorphic self-map f ι : Xι → Xι. In this way, a

gluing ι defines a holomorphic semiconjugacy (F ,X )→ (f ι, Xι).

Recall the definition of the fundamental edges and vertices, from §6.2. The choice of

gluings along the N fundamental edges determines the gluings at all vertices above v0. As

with the tree of local models, a gluing can also be reconstructed from its action on the spine

of (F ,X ).

Proof of Proposition 7.3. Fix a tree of local models (F ,X ) = {(fv, (Xv, ωv), πv) : v ∈ V }
over a metric polynomial tree (F, T, h) and let (R,S) be the first-return map to its spine.

Suppose we are given the data consisting of the gluings ιe, e ∈ S(T ), along the spine.

Note that the gluings at all edges above vN are determined by those at the fundamental

edges e1, . . . , eN . We proceed inductively on descending height. Let n ≥ 0 and suppose

ιe is defined along all edges joining vertices with simplicial distance ≤ n from the highest

branching vertex v0. Let v be a vertex at distance n+ 1, joined by edge e above it to vertex

v′. If v lies in the spine, then ιe has already been defined. If v is not in the spine, then

deg(fv : Xv → XF (v)) = 1 and fv′ has degree 1 on the inner annulus corresponding to e.

Setting ιe := f−1v′ ◦ ιF (e) ◦ fv gives the unique extension of the gluing along e so that the

needed functional equation is satisfied.

The previous paragraph shows that gluings along the spine determine gluings on the

whole tree of local models, yielding a holomorphic degree d branched covering map f of an

abstract planar Riemann surface X to itself. The proof of the realization theorem (Theorem

7.1 below) shows that the abstract basin dynamics (f,X) is holomorphically conjugate to

that of some polynomial. �

7.6. Realization theorem. We now prove Theorem 7.1. It may be useful to review the

proof sketch of the tree realization theorem, given in §6.8. The final step in the proof is a

continuity argument; to make the continuity argument go through in the setting of trees of

local models, we rely on some observations from [DP2], in particular the proof of Lemma

3.2 there.

Proof of Theorem 7.1. Let (F ,X ) = {(fv, (Xv, ωv), πv) : v ∈ V } be a tree of local models

over the metrized tree (F, T, h). When the tree (F, T, h) lies in the shift locus, so that all

critical points have positive height, the realization goes through as for trees. The first two

steps of tree realization (as described above in §6.8) are already achieved by the given data.

That is, over every vertex we have local model surfaces “modelled on” the vertices of T , and

for every pair of vertices v and F (v) we have local model maps “modelled on” the action of

F . We glue the local models, first over the fundamental edges (which uniquely determines

gluing so that map extends holomorphically above v0), and choose gluings inductively on

descending height below v0 so the resulting map on the glued surface is holomorphic. We

appeal to the uniformization theorem and extendability of the dynamics on the glued surface
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to all of C, and conclude the existence of a polynomial in the shift locus realizing the given

tree of local models.

Now suppose the tree (F, T, h) has critical points in its Julia set (i.e. of height 0). By

[DM, Theorem 5.7], we can approximate (F, T, h) by a sequence of metrized trees (Fk, Tk, hk)

so that (Fk, Tk, hk) is isometrically conjugate to (F, T, h) at all heights ≥ 1/k, and further,

all critical points of (Fk, Tk, hk) have height ≥ 1/k. We may construct trees of local models

(Fk,Xk) over each (Fk, Tk, hk), so that when restricted to heights above 1/k, the dynamics

of Fk is holomorphically conjugate to that of F .

Choose arbitrarily a gluing ι for (F ,X ). For each k, via the identification from the above

conjugacies, we transport the gluing ι to a partially defined gluing for (Fk,Xk), and we

choose an extension arbitrarily to obtain a gluing ιk for (Fk,Xk). By the first paragraph,

these determine polynomials fk which we may assume are monic and centered. Each of the

polynomials fk has the same maximal critical escape rate, so by passing to a subsequence,

we may assume the fk converge locally uniformly on C to a polynomial f .

As in the proof of [DP2, Lemma 3.2], the local uniform convergence fk → f on C implies

that for any t > 0 the restrictions to {t ≤ Gk(z) ≤ 1/t} converge uniformly to f on

{t ≤ Gf (z) ≤ 1/t} and the 1-forms ωk = ∂Gk converge on this subset to ω = ∂Gf ; indeed,

the escape-rate functions are harmonic where positive, so the uniform convergence implies

the derivatives also converge. We therefore conclude that the tree of local models associated

to f is isomorphic to (F ,X ). �

8. Symmetries in the tree of local models

A tree of local models may admit many nontrivial automorphisms. The group of such

symmetries, unsurprisingly, will play an important role in the problem of counting topolog-

ical conjugacy classes.

8.1. The automorphism group. Let Aut(F ,X ) be the conformal automorphism group

of the tree of local models (F ,X ), as defined in §7.3. While any basin of infinity in degree

d has only a finite group of automorphisms, which is necessarily a subgroup of the cyclic

group of order d − 1, the group Aut(F ,X ) can be large and complicated. Consider the

following examples.

For any degree 2 tree of local models, we have Aut(F ,X ) ' Z/2Z. The unique nontrivial

automorphism is generated by an order-two rotation of the local model surface containing

the critical point. It acts trivially on all local models above the critical point. The action on

all vertices below the critical point is uniquely determined by the dynamics, because every

such vertex is mapped with degree 1 to its image.

By contrast, consider the tree of local models for the cubic polynomial f(z) = z2 + εz3

for any small ε. This polynomial has one fixed critical point at the origin and one escaping

critical point c; let M be the escape rate of c. While the basin (f,X(f)) has no nontrivial

automorphisms, the tree of local models has an automorphism of infinite order, acting by

a rotation of order 2 at the vertex v of the spine for which the corresponding central leaf

Lv contains a preimage of c. The rotation of order 2 at height M/3 induces an order 2n
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rotation at the vertex in the spine of height M/3n. The action on the local model surface

at each vertex of local degree 1 is uniquely determined; similarly for the vertices at heights

greater than M . In fact, for this example, Aut(F ,X ) is isomorphic to the profinite group

Z2, the 2-adic integers under addition; this follows from Lemma 8.4 below.

8.2. Local symmetry at a vertex. Denote by S1 the quotient group of R by the subgroup

2πZ. The group of orientation-preserving isometries of a Euclidean circle of circumference

2π is then canonically isomorphic to S1 via the map which measures the displacement

between a point and its image.

Let (F ,X ) be a tree of local models with underlying tree (F, T ). Let v be any vertex of

T . The outer annulus of Xv is metrically the product of an oriented Euclidean circle C of

circumference 2π with an interval. Let Stabv(F ,X ) denote the stabilizer of v in Aut(F ,X ),

i.e. all Φ ∈ Aut(F ,X ) with Φ(Xv) = Xv. Any element of this stabilizer induces a conformal

automorphism of Xv. Because this automorphism must preserve the outer annulus of Xv,

it is necessarily a rotation. Consequently, there is a well-defined homomorphism

Stabv(F ,X )→ Aut(Xv, ωv) ↪→ Isom+(C) = S1.

Lemma 8.1. For every vertex v, the image of Stabv(F ,X ) in S1 is a finite cyclic group

Z/k(v)Z.

Proof. Because elements of Aut(F ,X ) must commute with the dynamics, the points of the

critical grand orbits are permuted, preserving heights; every local model surface (Xv, ωv)

contains at least one and finitely many such points. Therefore the image of Stabv(F ,X ) in

the group of rotations is finite. �

The order k(v) is called the local symmetry of (F ,X ) at vertex v.

8.3. Profinite structure. Fix a height t > 0. Consider the automorphism group, similarly

defined, of the restriction (Ft,Xt) of the dynamics of (F ,X ) to the local models over vertices

with height > t. Restriction gives a map Aut(F ,X ) → Aut(Ft,Xt); denote its image by

Aut(F ,X )(Ft,Xt). If 0 < s < t then restriction gives a compatible natural surjection

Aut(F ,X )(Fs,Xs)→ Aut(F ,X )(Ft,Xt).

The structure of Aut(F ,X )(Ft,Xt) for large positive values of t is easy to compute. Recall

the definition of the fundamental vertices from §6.2.

Lemma 8.2. Let (F ,X ) be a tree of local models over (F, T ) with N fundamental vertices

v0, . . . , vN−1. Fix j ∈ {0, . . . , N − 1} and let tj be the height of vj in T (F ). Then

Aut(F ,X )(Ftj ,Xtj ) '
j+N−1∏
i=j

Z/k(vi)Z

where k(vi) is the local symmetry of (F ,X ) at vi.

Proof. The automorphism group Aut(F ,X ) stabilizes all vertices vj with j ≥ 0, and the

cyclic group Z/k(vi)Z is the stabilizer of vi. The action of any automorphism at vertex

vi uniquely determines its action at all vertices in its forward orbit, by Lemma 5.3. The
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fundamental vertices are in distinct grand orbits, so the automorphism group is a direct

product. �

Lemma 8.3. For any tree of local models, Aut(F ,X ) is a profinite group, the limit of the

collection of finite groups Aut(F ,X )(Ft,Xt).

Proof. It remains to show that the groups Aut(F ,X )(Ft,Xt) are finite for each t > 0. The

group Aut(F ,X )(Ft,Xt) is finite by Lemma 8.2 for all t large enough. From Lemma 5.3,

the action of an automorphism ϕ ∈ Aut(F ,X ) at any vertex v determines uniquely its

action at the image vertex F (v). The vertices of a given height must be permuted by an

automorphism, so we may apply Lemma 8.1 to conclude that Aut(Ft,Xt) is finite for any

t > 0. The restriction maps allow us to view the full automoprhism group Aut(F ,X ) as an

inverse limit. �

8.4. The spine and its automorphism group. Now suppose (F ,X ) is a tree of local

models with first-return map (R,S) on its spine. Since (R,S) is again a dynamical system,

it too has an automorphism group Aut(R,S) which is naturally a profinite group. It follows

that Aut(R,S) is inductively computable; the base case is covered by Lemma 8.2 at height

t = h(v0). Furthermore, in the shift locus, the subtree of S below v0 is finite, and Aut(R,S)

is a finite group which is inductively computable in finite time.

The restriction of any automorphism ϕ ∈ Aut(F ,X ) to the spine S is an automorphism

of (R,S). Indeed, ϕ preserves local degree, and the spine consists of all vertices with local

degree > 1. The following lemma then implies that Aut(F ,X ) is inductively computable

from the data of (R,S).

Lemma 8.4. The map

Aut(F ,X )→ Aut(R,S),

which sends an automorphism to its restriction to the spine, is an isomorphism.

Proof. Suppose ψ ∈ Aut(R,S) is given. We use the usual inductive argument to show

ψ = ϕ|S for a unique ϕ ∈ Aut(F ,X ). Define ϕ by ϕ = ψ on the local model surfaces at and

above the vertex v0. For the induction step, suppose ϕ has been constructed at all vertices

with simplicial distance at most n from v0, and suppose ϕ commutes with F . Let v′ be a

vertex at simplicial distance exactly n from v0 and suppose v is just below v′. If v ∈ S we

set ϕv = ψv on the surface Xv. If v 6∈ S then by induction ϕ has already been defined on

v′ and on w = F (v). Let ŵ = ϕ(w), v̂′ = ϕ(v′), and denote the image of v under ϕ, yet to

be defined, by v̂.

The restriction ϕv′ to Xv′ uniquely determines v̂, because an automorphism must preserve

the tree structure. In addition, ϕ commutes with the local model maps at each vertex, so

fv̂′ ◦ϕv′ = ϕF (v′)◦fv′ , and we deduce that ŵ = F (v̂). Since v 6∈ S, neither is v̂, and the local

model maps fv : Xv → Xw and fv̂ : Xv̂ → Xŵ are isomorphisms. So the automorphism

ϕ must send Xv to Xv̂ via the composition (fŵ)−1 ◦ ϕw ◦ fv; this composition defines the

extension ϕv. In this way, we have extended ϕ uniquely from simplicial distance n to

simplicial distance n+ 1, completing the proof. �
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8.5. Symmetries in degree 3. We will use the following lemma in our computations for

cubic polynomials in Section 11. Recall once more the definition of the fundamental vertices

from §6.2.

Lemma 8.5. Suppose f is a cubic polynomial with critical points c1, c2 and escape rate Gf ,

and let (F ,X ) be its tree of local models.

(1) If c1 = c2, then k(v0) = 3, k(v1) = 1, and Aut(F ,X ) is cyclic of order 3.

(2) If Gf (c1) = Gf (c2) with c1 6= c2, then either

(a) k(v0) = k(v1) = 1 and Aut(F ,X ) is trivial, or

(b) k(v0) = k(v1) = 2 and Aut(F ,X ) is cyclic of order 2.

(3) In all other cases, the order of local symmetry of each fundamental vertex is equal

to 1.

Case (1) occurs when f is affine conjugate to f(z) = z3 + c with c outside the connect-

edness locus; case 2(b) when f admits an automorphism, i.e. is affine conjugate to an odd

map.

Proof. In case (1), the number of fundamental vertices is N = 1, the local model map

fv0 has a deck group of order 3, and its range Xv1 has a distinguished point, the unique

critical value. Case (2) is similar. If f has an automorphism, then there are symmetries

of order 2 at v0 and v1 commuting with fv0 ; thus k(v0) = k(v1) = 2. If f fails to have an

automorphism but c1 6= c2, there are no symmetries at v0 and consequently no symmetries

at v1, so k(v0) = k(v1) = 1. The conclusions about the automorphism groups then follow

immediately from Lemma 8.4.

To prove the last statement, suppose that the two critical points have distinct escape

rates. Then the local model map from Xv0 to its image is a degree 3 branched cover with

a unique critical point (of multiplicity 1) in the surface Xv0 . Such a branched cover has

no symmetries, so k(v0) = k(F (v0)) = 1. Further, if the two critical points are in distinct

foliated equivalence classes, then the local model surface Xv1 has a unique marked point on

its central leaf (its intersection with the orbit of critical point c2) that must be preserved

by any automorphism; therefore, the local symmetry at v1 will be 1. �

9. Topological conjugacy

In this section, we remind the reader of the quasiconformal deformation theory of polyno-

mials, following [McS]. We show that the tree of local models is invariant under topological

conjugacies that preserve critical escape rates. In other words:

Theorem 9.1. The tree of local models is a twist-conjugacy invariant.

We recall the topology on Bd, the moduli space of basins (f,X(f)) introduced in [DP2],

and we study the locus Bd(F ,X ) ⊂ Bd of basins with a given tree of local models (F ,X ).

Since a gluing of (F ,X ) determines a basin dynamical system (Proposition 7.3), we refer

to elements of Bd(F ,X ) as gluing configurations.
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Recall the notion of fundamental edges of a tree, from §6.2. If κ is the reciprocal of a

positive integer, we denote by κS1 the quotient group R/2πκZ of S1 by the group generated

by a rotation of order κ−1. Carefully accounting for symmetries in (F ,X ), we show:

Theorem 9.2. Let (F ,X ) be a tree of local models with N fundamental edges. Given a

basepoint (f,X(f)) ∈ Bd(F ,X ), there is a continuous projection

Bd(F ,X )→ (κS1)N

for some positive integer κ−1, giving Bd(F ,X ) the structure of a compact, locally trivial

fiber bundle over an N -torus whose fibers are totally disconnected. The twisting action is

the lift of the holonomy induced by rotations in each coordinate, and the orbits form the

leaves of a foliation of Bd(F ,X ) by N -dimensional manifolds. The leaves are in bijective

correspondence with topological conjugacy classes within the space Bd(F ,X ). For (F ,X ) in

the shift locus, the fibers are finite.

The value of κ depends only on the local symmetries at the fundamental vertices, defined

in §8.2; a formula for κ is given in equation (9.1) below.

From Theorem 9.2, the problem of classifying basin dynamics up to topological conjugacy

amounts to computing the monodromy action of twisting in the bundle Bd(F ,X ). Leading

to the proof of Theorem 1.2, we observe:

Corollary 9.3. Under the hypotheses of Theorem 9.2, let θ ∈ (κS1)N be any point in

the base torus. Then the set of topological conjugacy classes in Bd(F ,X ) is in bijective

correspondence with the orbits of the monodromy action of ZN = π1((κS1)N , θ) on the fiber

above the basepoint θ.

9.1. Fundamental subannuli. Fix a polynomial representative f : C→ C of its conjugacy

class, and let Gf be its escape-rate function. The foliated equivalence class of a point z in

the basin X(f) is the closure of its grand orbit

{w ∈ X(f) : ∃ n,m ∈ Z, fn(w) = fm(z)}

in X(f). Let N be the number of distinct foliated equivalence classes containing critical

points of f . Note that N = 0 if and only if the Julia set of f is connected, if and only

if the maximal critical escape rate M(f) = 0. is zero. For N > 0, these critical foliated

equivalence classes subdivide the fundamental annulus

A(f) = {z ∈ X(f) : M(f) < Gf (z) < dM(f)}

into N fundamental subannuli A1, . . . , AN linearly ordered by increasing escape rate.

The number N coincides with the number of fundamental edges of the tree (F, T (f)), as

defined in §6.2, and the number of independent critical escape rates, defined in §2.1. For

each i = 1, . . . , N , the annulus Ai lies over the fundamental edge ei.

9.2. Quasiconformal deformations of the basin. For each conformal conjugacy class

of polynomial f ∈ Md, there is a canonical space of marked quasiconformal deformations

of f supported on the basin of infinity. The general theory, developed in [McS], shows that

this space admits the following description; see also [DP1]. The wring motion of [BH1] is a

special case.
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One can define quasiconformal stretching and twisting deformations on each of the sub-

annuli Aj independently so that the resulting deformation of the basin X(f) is continuous

and well-defined and an isometry on each horizontal leaf. We will parametrize the deforma-

tions of each subannulus by a parameter t+ is in the upper half-plane H = {t+ is : s > 0},
acting by the linear transformation (

1 t

0 s

)
on a rectangular representative of the annulus in R2, of width 1 and height equal to the

modulus modAj , with vertical edges identified. Extending the deformation to the full basin

of infinity by the dynamics of f , the deformation thus defines an analytic map

HN →Md,

sending point (i, i, . . . , i) to f . By construction, the twisting deformations (where s = 1 in

each factor) preserve escape rates, while stretching (with t = 0 in each factor) preserves ex-

ternal angles. Both stretching and twisting send horizontal leaves isometrically to horizontal

leaves.

An important idea of [McS] in this context is that any two polynomial basins (f,X(f))

and (g,X(g)) which are topologically conjugate are in fact quasiconformally conjugate by a

homeomorphism of the above type: it has a decomposition into N stretching and twisting

factors, each factor determined by its effect on the N fundamental subannuli. Moreover, if

the forward orbits of two critical points meet a common level set in the closure {M(f) ≤
Gf ≤ d ·M(f)} of the fundamental annulus, the arc length (angular difference) between

these points is preserved under any topological conjugacy. (See §5 of [McS].)

9.3. Normalization of twisting. For the proofs of Theorems 12.1, 4.1, and 4.2, it will be

convenient to work with the following normalization for the twisting action. Fix f ∈ Md

and consider the real analytic map

Twistf : RN →Md

which parametrizes the twisting deformations in the N fundamental subannuli of f , sending

the origin to f . We normalize the parameterization Twistf so that the basis vector

ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ RN

induces a full twist in the j-th fundamental subannulus. That is, if modAj is the modulus of

the j-th subannulus of f , then Twistf (t ej) corresponds to the action of 1 + i t/modAj ∈ H
in the coordinates described in §9.2.

9.4. Twisting and the tree of local models. We now prove that the tree of local models

is invariant under the twisting deformation. More precisely, a twisting deformation induces,

via restriction to central leaves and extension by isometries, an isomorphism between trees

of local models.

Proof of Theorem 9.1. Fix a tree of local models associated to a polynomial f ∈ Md

and suppose a twisting deformation conjugates (f,X(f)) to (g,X(g)) by a quasiconformal

map h. Then h induces an isomorphism H : (F, T (f)) → (G,T (g)), and so for each

v ∈ T (f) the restriction of h gives an affine map of local model surfaces hv : (Xv(f), ωv)→
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(XH(v)(g), ωH(v)). Since hv is an isometry on the corresponding central leaves, it extends

to an isometry ϕv : Xv(f) → XH(v)(g). The dynamics of f and of g is locally a constant

scaling, so ϕ = {ϕv} yields an isomorphism (F(f),X (f))→ (F(g),X (g)). �

9.5. The space of basins Bd. We begin by recalling results from [DP2]. The set Bd
of conformal conjugacy classes of basins (f,X(f)) inherits a natural Gromov-Hausdorff

topology: two basins (f,X(f)), (g,X(g)) are ε-close if there is a relation Γ on the product

{ε < Gf < 1/ε} × {ε < Gg < 1/ε} which is ε-close to the graph of an isometric con-

jugacy. The natural projection π : Md → Bd is continuous, proper, and monotone (i.e.

has connected fibers). Both spaces are naturally stratified by the number N of fundamen-

tal subannuli and the projection respects this stratification. While discontinuous on Md,

twisting is continuous on each stratum BNd , by [DP1, Lemma 5.2].

9.6. The bundle of gluing configurations. Fix a tree of local models (F ,X ). Recall

from §7.5 that an abstract gluing ι defines a quotient map X → X/ι = Xι to an abstract

planar Riemann surface to which the dynamics of F descends to yield a proper degree

d holomorphic self-map f ι : Xι → Xι. In this way, a gluing ι defines a holomorphic

semiconjugacy (F ,X ) → (f ι, Xι). The holomorphic conjugacy class of (f ι, Xι) we call

the associated gluing configuration. Given an abstract tree of local models (F ,X ), we let

Bd(F ,X ) ⊂ Bd be the collection of all gluing configurations. Theorem 7.1 implies this is

nonempty.

We begin with an identification of Bd(F ,X ) as a set.

The automorphism group Aut(F ,X ) acts naturally on the set of gluings as follows. Given

an automorphism Φ ∈ Aut(F ,X ) and a gluing ι = {ιe}e∈E , the gluing Φ.ι is the collection

of isomorphisms {(Φ.ι)e}e∈E defined as follows. Suppose edge e ∈ E joins v to the vertex

v′ above it; set v̂ = Φ−1(v) and ê = Φ−1(e) and define

(Φ.ι)e := Φv̂′ ◦ ιê ◦ Φ−1v .

Put another way: a gluing ι defines an equivalence relation ∼ι, which is a subset of X ×X ;

the gluing Φ.ι corresponds to the equivalence relation given by (Φ× Φ)(∼ι) ⊂ X × X .

Proposition 9.4. The natural map ι 7→ (f ι, Xι) descends to a bijection between Aut(F ,X )-

orbits of gluings and gluing configurations.

Proof. In one direction, an automorphism sending one gluing to another, by definition,

descends to holomorphic map conjugating the two gluing configurations. In the other, a

conjugacy between two gluing configurations lifts to an automorphism sending the first

corresponding gluing to the second. �

With respect to the topology on the space of basins Bd, we now prove that the set of all

gluing configurations forms a compact fiber bundle over a torus.

The main idea in the proof of Theorem 9.2 is the following. Suppose (F ,X ) is a tree

of local models. Gluing over the N fundamental edges gives a continuous set of choices;

there should be one circle’s worth for each such edge. The product of these N circles

should give the torus that is the base of our bundle. However, the possible presence of

symmetries of (F ,X ) that act nontrivially at the local model surfaces corresponding to
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fundamental vertices means that we need to pass to a finite quotient of this torus. This

is again a torus, and now this is the base of our bundle. Gluing at the fundamental edges

determines the gluing at all higher edges. Now suppose gluings over the fundamental edges

have been chosen, and consider the possibilities for gluing over the remaining, lower edges.

Fix a distance n below v0 as in §6.6, and consider the gluings of edges at this distance.

For fixed choice of fundamental gluings, this is a finite set. Again, the possible presence

of symmetries of (F ,X ) among local model surfaces Xv at vertices of distance n means

that two distinct such gluing choices might yield the same result. Considering inductively

distances n = 1, 2, 3, . . ., we see that the totality of all such gluing choices is naturally either

finite, or a Cantor set. Twisting deformations – that is, altering continuously the gluing

choices along the fundamental edges – gives an action of RN on the set of gluings at distance

n, and the orbits are the leaves of our bundle.

Proof of Theorem 9.2. Let v0, . . . , vN−1 denote the fundamental vertices of the underlying

polynomial tree and vN = F (v0). Recall the definition of the local symmetry k(v) of (F ,X )

at a vertex v, given in §8.2. We set

(9.1) κ =
1

lcm{k(v0), k(v1), . . . , k(vN )}
.

We first define the continuous projection

Bd(F ,X )→ (κS1)N

which will define the fiber bundle structure. Fix any basepoint (f,X(f)) in Bd(F ,X ). Let θ

be an angular coordinate in R/Z on the fundamental annulus Af := {Mf < Gf (z) < dMf};
it is defined up to an additive constant. Now suppose g ∈ Bd(F ,X ). By assumption there

exists a (not necessarily unique) isomorphism ϕ(g) : (F(f),X (f)) → (F(g),X (g)) which

restricts to isomorphisms

ϕi(g) : Xi(f)→ Xi(g), i = 0, . . . , N

between the local model surfaces over vertices v0, v1, . . . , vN for f and g. Note that the

ϕi(g)’s must respect the markings by the orbits of critical points, as in §8. There are

choices for the ϕi(g)’s: they are unique only up to pre-composition by the restriction to

Xi(f) of an element of Aut(F(f),X (f)). For each i = 0, . . . , N − 1, the outer annulus of

Xi(f) coincides with the inner annulus of Xi+1(f), and so ϕi+1(g)−1 ◦ ϕi(g) is well-defined

on the outer annulus of Xi(f). Suppose x is an arbitrary point in the outer annulus of

Xi(f). Define

∆i(g) := θ(ϕi+1(g)−1 ◦ ϕi(g)(x))− θ(x) ∈ κS1.
This depends only on g: changing the angular coordinate or the basepoint x changes each

term in the difference by the same additive constant, and the ambiguity in the choice of

isomorphisms ϕi(g) is annihilated by recording the difference in κS1 instead of in just S1.
The projection Bd(F ,X )→ (κS1)N is then well-defined defined by the formula

g 7→ (∆i(g))N−1i=0 .

Local triviality and continuity of the projection can be seen from the twisting action.

We proved in [DP2, Lemma 5.2] that the twisting action of RN is well-defined on the
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stratum BNd of polynomial basins with N fundamental subannuli. It is continuous and

locally injective. The space Bd(F ,X ) is invariant under twisting by Theorem 9.1. The

definitions of the twisting action and of the projection imply that twisting by t in the ith

fundamental subannulus translates the ith coordinate of the image under projection to the

base by t mod 2πκ. It follows that twisting defines a local holonomy map between fibers

in the bundle of gluing configurations and the space of gluing configurations is foliated by

N -manifolds whose leaves are the orbits under the twisting action.

Recall from §9.2 that two polynomial basins are topologically conjugate and have the

same critical escape rates if and only if they are equivalent by a twisting deformation.

Thus, the topological conjugacy classes within the space of gluing configurations are easily

seen to be in one-to-one correspondence with the twisting orbits, i.e. leaves.

We now show that the fibers are totally disconnected. Recall the gluing construction

used in the proof of Theorem 7.1. First, fix a point b in the base torus of the projection.

This corresponds to choosing one from among finitely many choices of gluings over the

fundamental edges joining v0, . . . , vN ; this determines all gluings at vertices above v0. The

collection of gluing choices is now made sequentially by descending height. At the inductive

stage, we have a vertex v joined up to a vertex v′ along an edge e of degree k; there are

k choices for the gluing isomorphism over e. After a choice is made at every vertex in

the tree, we obtain a holomorphic self-map f : X → X which is conformally conjugate to

f : X(f)→ X(f) for some polynomial f , by Theorem 7.1. All basins in Bd(F ,X ) over the

basepoint b are obtained in this way. By the discreteness of gluing choices at each vertex and

the definition of the Gromov-Hausdorff topology on Bd, for any fixed simplicial distance n

from v0, the set of gluing configurations which can be produced using the continuous choices

corresponding to the basepoint b and to a fixed set of choices at the finite set of vertices v

below and at distance at most n from v0 is an open set in Bd(F ,X ). In this way, we see

that each gluing configuration over the basepoint b is in its own connected component and

the fibers are finite if (F ,X ) lies in the shift locus.

It remains to show that the bundle of gluing configurations is compact. By properness of

the critical escape rate map f 7→ {Gf (c) : f ′(c) = 0} on the space of basins Bd [DP1], the

bundle must lie in a compact subset of Bd. Let (fn, X(fn)) be any sequence in the bundle

converging to a basin (f,X(f)). Exactly as in the proof of Theorem 7.1, we may deduce

that (f,X(f)) has the same tree of local models, and is therefore in the bundle of gluing

configurations; see also [DP2, Lemma 3.2]. �

Lemma 9.5. Let (F ,X ) be a tree of local models. If the fibers in the bundle of gluing

configurations have infinite cardinality, then they are homeomorphic to Cantor sets.

Proof. The fibers are compact and totally disconnected by the previous lemma. By Brouwer’s

topological characterization of the Cantor set [HY, Thm. 2-97], we need only show the fiber

is perfect. From the inductive construction of basins from the tree of local models, we see

that the fiber of the bundle of gluing configurations has infinite cardinality if and only if

there are conformally inequivalent gluing choices at an infinite collection of heights tend-

ing to 0. By the definition of the Gromov-Hausdorff topology on the space of basins Bd,
basins are close if they are “almost” conformally conjugate above some small height t > 0.
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Consequently, any basin in the bundle of gluing configurations can be approximated by a

sequence where a different gluing choice has been made at heights → 0. �

9.7. The bundle of gluing configurations, in degree 2. We can give a complete picture

of the bundle of gluing configurations in degree two. Let (F ,X ) be a tree of local models

in degree 2. In the notation of the proof of Theorem 9.2, we have N = 1, k(v0) = 2,

and k(v1) = 1, so κ = 1/2. Since every edge below v0 has degree one, once the basepoint

b ∈ (1/2)S1 corresponding to the gluing along the fundamental edge e joining v0 and v1
has been chosen, the remaining gluings are uniquely determined. Hence the projection map

Bd(F ,X ) → (1/2)S1 is 1-to-1 and the bundle of gluing configurations B2(F ,X ) ⊂ B2 is

homeomorphic to a circle. In more familiar language: it is the image of an equipotential

curve around the Mandelbrot set in the moduli spaceM2 via the homeomorphism from the

shift locus in M2 to that of B2. A full loop around the Mandelbrot set corresponds to an

external angle displacement running from 0 to 2π/2. In fact, this is the same as the loop

in Blanchard-Devaney-Keen inducing the generating automorphism of the shift [BDK]; the

two lobes of the central leaf at v0 are interchanged under the monodromy generator.

9.8. The bundle of gluing configurations in degree 3. In degree three, we can give a

complete succinct picture of the bundle of gluing configurations in a few special cases. The

remaining ones are handled by Theorems 4.1 and 4.2.

Suppose f is a cubic polynomial with an automorphism and disconnected Julia set.

Then both critical points escape at the same rate, the automorphism has order 2, and it

interchanges the two critical points and their distinct critical values. It is easy to see that

there is a unique branched cover of laminations of degree 3 with this symmetry. It follows

that, for a given critical escape rate, there is a unique tree of local models (F ,X ) with

this configuration. By Lemma 8.5, k(v0) = k(v1) = 2, so κ = 1/2. Like in the quadratic

case, a basin of infinity is uniquely determined by the gluing of the local models along the

fundamental edge, because all edges below v0 have local degree 1. But it now takes two

turns around the base (= one full twist in the fundamental annulus) to return to a given

basin, because the angle displacement between a critical point and its critical value is an

invariant of conformal conjugacy. Thus the projection B3(F ,X ) → (1/2)S1 is 2-to-1 and

the bundle of gluing configurations B3(F ,X ) is homeomorphic to a circle.

Suppose f is a cubic polynomial where the two critical points coincide and escape to

infinity, so it has a monic and centered representation as f(z) = z3 + c, with c not in the

connectedness locus. Let (F ,X ) be its tree of local models. By Lemma 8.5, k(v0) = 3,

k(v1) = 1, and Aut(F ,X ) is cyclic of order 3. The bundle B3(F ,X ) therefore projects

to the circle (1/3)S1. Again, since all edges below v0 map by degree 1, the gluing at the

fundamental edge determines the basin. Going around this base circle of length 1/3 forms

a closed loop in B3(F ,X ), because a basin of infinity is uniquely determined by the gluing

along the fundamental edge; the bundle is homeomorphic to a circle. Note that lifting this

path to the family {z3 + c : c ∈ C} induces only a half-loop around the connectedness locus,

since z 7→ −z conjugates z3 + c to z3 − c.
Suppose (F ,X ) is a tree of local models for a cubic polynomial in the shift locus with

N = 2 fundamental edges. (Recall the definition of fundamental edges from §6.2.) By
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Lemma 8.5, there are no symmetries over v0, v1, v2, so κ = 1. The base of the fiber bundle

is S1 × S1. For polynomials in the shift locus, there exists a height t > 0 such that all

vertices below height t have local degree 1, so all fibers of the fiber bundle must be finite.

In fact, the bundle of gluing configurations B3(F ,X ) is homeomorphic to a finite union of

smooth 2-tori; compare [DP1, Theorem 1.2]. The question of how many tori comprise this

finite union is answered by Theorem 4.1; each torus corresponds to a distinct topological

conjugacy class of polynomials.

Finally, let (f,X(f)) be any other basin in the space B3, so it has N = 1 fundamental

edge and there are are no symmetries at the fundamental vertices by Lemma 8.5. Therefore,

κ = 1 and the base of the fiber bundle is the circle S1. The fibers are necessarily finite if f lies

in the shift locus, but the fibers can be finite or infinite in the case where one critical point

lies in the filled Julia set. The number of connected components in the bundle B3(F ,X )

(and their topological structure) is given in Theorems 4.1 and 4.2.

10. The pictograph

Suppose f is a polynomial of degree d ≥ 2, with disconnected Julia set, and with N

independent critical escape rates; equivalently, N fundamental subannuli. In this section,

we define the pictograph D(f). Using Theorem 9.1, we will first show

Theorem 10.1. The pictograph is a topological-conjugacy invariant.

The pictograph is defined in terms of the tree of local models (F ,X (f)) of the polyno-

mial f . Formally speaking, the pictograph is a static object; there is no map. We show

nevertheless that

Theorem 10.2. A tree of local models (F ,X ) is determined up to holomorphic conjugacy

by its pictograph D and either

(i) the heights of the critical points, or

(ii) the lengths of the fundamental edges e1, . . . , eN in the height metric on the tree.

It follows from Theorem 10.2 that the pictograph encodes the symmetry group Aut(F ,X )

of the tree of local models. It also determines the number of fundamental vertices of the

underlying tree. Theorems 10.2 and 9.2 immediately imply Theorem 1.3.

An abstract pictograph D is defined as the pictograph associated to an abstract tree of

local models, as defined in §7.2. Recall that the notion of compatible critical heights was

defined in §6.5. Proposition 6.1 implies:

Proposition 10.3. For each abstract pictograph of degree d with N fundamental vertices,

the set of compatible critical heights (h1, . . . , hd−1) ∈ [0,∞)d−1, with h1 ≥ · · · ≥ hd−1, is

homeomorphic to an open N -dimensional simplex.
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10.1. Pictographs. Fix a polynomial f of degree d with disconnected Julia set and N

fundamental subannuli (defined in §9.1). Let (F ,X ) be the tree of local models associated

to f , and let (F, T ) = (F, T (f)) be its simplicial polynomial tree. Recall that the spine

S(T ) of the tree is the convex hull of its critical points and critical ends; equivalently, it is

the set of edges and vertices mapping by degree > 1. The fundamental edges e1, . . . , eN−1
and vertices v0, . . . , vN−1 of T were defined in §6.2. The pictograph is a collection of labelled

lamination diagrams, one for each vertex in S(T ) at and below vertex vN = F (v0), where

each diagram labelled by its intersection with the critical orbits. It is defined as follows.

Recall that v0 denotes the highest branching vertex of T (f) and vN = F (v0). We consider

the vertices v ∈ S(T ) which are at and below the height of vN . This gives us a simplicial

subtree of the spine that we denote by S≤N (T ). For each vertex v ∈ S≤N (T ), record

the lamination diagram for the central leaf of the local model surface Xv(f). To record

simultaneously the tree structure of S≤N (T ), we join these lamination diagrams by an edge

if the corresponding vertices are joined by an edge in S(T ). This forms a spine of lamination

diagrams.

To define the labels, we first choose an indexing of the critical points of f so that Gf (c1) ≥
. . . ≥ Gf (cd−1). Given a vertex v, we label the corresponding lamination diagram as follows.

Given an index i ∈ {1, . . . , d− 1} and an integer k ≥ 0, consider the point fk(ci) and how

this point is located relative to Xv(f).

• If fk(ci) lies in one of the bounded complementary components of Xv(f), we label

the corresponding gap in the lamination diagram for Xv(f) with the symbol ki.

• If fk(ci) lands on the central leaf of Xv(f), we label the corresponding equivalence

class in the lamination diagram for Xv(f) by the symbol ki. When indicated by a

drawing, we label only one representative point in the equivalence class.

• Otherwise, the label ki does not appear in the lamination diagram for Xv(f); note

that the point fk(ci) lies neither in the outer annulus nor in an inner annulus of

Xf (f).

Thus, the data in the pictograph is the same as the static data of the collection, for the

above vertices v in the spine, of the local model surfaces Xv(f) labelled in the above fashion,

with the map forgotten.

Suppose now f and g are two polynomials. We say f and g have equivalent pictographs

if, after applying some permutation of the set of indices i = 1, . . . , d − 1 for the critical

points, there exists

• a simplicial isomorphism ϕ : S≤N (T (f)) → S≤N (T (g)) between their spines of

lamination diagrams, such that:

• for each vertex v ∈ S≤N (T (f)), there is a rotation of the closed unit disk sending

the lamination diagram for f at v to the lamination diagram for g at ϕ(v) and

preserving the labels. In other words: a rotation makes the two labelled lamination

diagrams coincide.

An abstract tree of local models (F ,X ) determines a pictograph as well. Counting both

critical points in X and those critical ends in J(F ) with multiplicity, there are again d− 1

critical points. Given a vertex v with local model surface (Xv, ωv), we regard a critical point

ci below v (in the tree) as“lying in” the gap of Xv corresponding to the edge leading to ci.
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0

1

Figure 10.1. The pictograph for every quadratic polynomial with discon-

nected Julia set.

10.2. Examples of pictographs. The degree 2 pictographs are the easiest to describe:

in fact, there is only one possibility. For quadratic polynomials z2 + c with disconnected

Julia set, the spine of the tree is the ray from the unique critical vertex v0 heading to ∞.

The lamination diagram over the vertex v0 is a circle cut by a diameter, representing the

figure 8 level set {z ∈ C : Gc(z) = Gc(0)}, with arclength measured by external angle. The

pictograph includes the data of this single diagram together with the image lamination (the

trivial equivalence relation corresponding to level set {Gc = Gc(c)}), labelled by the symbol

0 to mark the critical point and 1 to mark the critical value. See Figure 10.1. Because

there is a unique critical point, we have dropped the subscript indexing. Because angles

are not marked on lamination diagrams, the pictographs are equivalent for all c outside the

Mandelbrot set. (Recall that the tree of local models, and therefore the pictograph, is not

defined for polynomials with connected Julia set.)

For degree 3, Figure 10.2 shows a pictograph for a cubic polynomial with critical escape

rates Gf (c1) = M and Gf (c2) = M/33 for some M > 0. The spine of its tree is the linear

subtree containing the four edges between critical point c2 and critical value f(c1). For the

pictograph, we include five lamination diagrams at heights M/3i, i = −1, 0, 1, 2, 3. The two

critical points are labelled by 01 and 02. Note that every spine in degree 3 will be a linear

subtree of T (f), because there are only two critical points.

In degree 4, Figure 1.2 of the Introduction shows a pictograph for a with critical escape

rates G(c1) = M , G(c2) = M/42, and G(c3) = M/43; the tree structure of the spine is now

non-linear.

In each of these examples, there is only one fundamental edge: N = 1. Figure 12.1 shows

a cubic example with two fundamental edges.

Figure 12.3 shows a pictograph that admits a self-equivalence, i.e. an automorphism;

the involution of indices 3↔ 4 and swapping the left- and right-hand branches realizes the

equivalence.

10.3. Proof of Theorem 10.1. Suppose f and g are topologically conjugate. Then there

exists a quasiconformal conjugacy between basins (f,X(f)) and (g,X(g)). By applying the

stretching deformations from §9.2, we may assume the heights of the fundamental subannuli

are the same, and that (f,X(f)) and (g,X(g)) are conjugate via a twisting deformation.
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Figure 10.2. A cubic pictograph, with critical escape rates (M,M/33) for

some M > 0.

By Theorem 9.1, the trees of local models (Ff ,X (f)) and (Fg,X (g)) are isomorphic via

a holomorphic conjugacy ϕ. Choose arbitrarily an indexing of the critical orbits for f .

This indexing can be transported via ϕ to an indexing of those for g, so f and g will have

equivalent pictographs. �

10.4. Reconstructing the tree of local models. We can now prove that a pictograph

plus the list of critical escape rates determines the full tree of local models over a metrized

polynomial tree. The strategy is the following. The critical orbit labels allow us to first

reconstruct the first-return map (R,S(T )) on the spine of the underlying tree (F, T ). Then

we use the lamination diagrams (and Theorem 5.1) to reconstruct the local model maps and

thus the first-return map (R,S) on the tree of local models. The heights of the local model

surfaces and the metric on the underlying tree are determined by the given compatible

critical heights.

Proof of Theorem 10.2. Suppose we are given the pictograph D for a polynomial f of degree

d and the list of compatible critical heights h1 ≥ h2 ≥ · · · ≥ hd−1 ≥ 0. By Theorem 7.2,

it suffices to reconstruct the spine S of the tree of local models and its first-return map.
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We begin with the reconstruction of the first-return map (R,S(T )) on the spine of the

underlying tree.

Let N be the number of independent critical heights. Denote by v0 the vertex associated

to the highest non-trivial lamination in D. There are exactly N trivial laminations above

v0 in the pictograph, each marked by points of the critical orbits. Denote these vertices by

v1, v2, . . . , vN , in ascending order. The spine S(T ) is part of the data of the pictograph,

after adjoining the ray from v0 to ∞. As usual, to reconstruct the action of R we proceed

inductively on descending height. Above v0, we have R = F , acting as translation by

simplicial distance N . Each vertex of S(T ) below v0 at simplicial distance j from v0, with

0 < j ≤ N , is sent by F to the vertex vN−j .

Now suppose we have computed the action of R on S(T ) for all vertices at simplicial

distance ≤ n from v0, and assume n ≥ N . Let v be a vertex in S(T ) at simplicial distance

n + 1 from v0, and let v′ be the adjacent vertex above it. Suppose w′ = R(v′). From the

simplicial distance between w′ and v0, we can determine the iterate k for which w′ = F k(v′).

Namely, if there are n′ edges on the path from w′ to v0, then necessarily we have n−n′ = kN

for some positive integer k. Then w′ = F k(v′).

Choose any index j so that the symbol 0j appears in the lamination diagram of v; since v

belongs to the spine, such j exists. Then the symbol 0j must also appear in the lamination

diagram of v′, and the symbol kj must appear in the lamination diagram Lw′ of w′. If kj
lies in a gap of Lw′ together with a symbol 0` for some index `, then necessarily kj must

appear in the lamination diagram below w′ also containing 0`. This vertex v(`) is uniquely

determined by `, and we may conclude that R(v) = v(`).

If kj lies in a gap of Lw′ containing no symbols of the form 0`, then F k(v) is not in the

spine. We must pass to a further iterate. For each iterate Rm, define k(m) by Rm(v′) =

F k(m)(v′). Choose the smallest positive integer m so that the symbol k(m)j lies in a gap

together with a symbol of the form 0` for some index ` in the lamination over Rm(v′).

Such an integer always exists because some iterate of R must send v′ to one of the vertices

{v1, . . . , vN}. For this integer m, we choose the vertex v(`) below Rm(v′) containing 0`,

and we set R(v) = v(`). In this way, we reconstruct (R,S(T )) to all vertices at simplicial

distance n+ 1 from v0, completing the induction argument.

Our next step is to reconstruct the height function h on the spine S(T ). It suffices to

determine the height of the fundamental vertices vi, for i = 0, 1, . . . , N − 1, because of

the relation h(F (v)) = d h(v) on vertices. We are given that h(v0) = h1, the height of

the highest critical point. For each i > 0, the lamination diagram over vi must contain at

least one marked point, labelled by the symbol kj for some positive integer k and index

j ∈ {2, . . . , d− 1}. It follows that h(vi) = dk hj .

At this point, we observe that we could have taken our initial data to be the lengths

of the N fundamental edges, rather than the heights of the critical points. Indeed, if li is

the length of fundamental edge ei, then the height function h is determined as follows. Set

l = l1 + · · · + lN . Then h(v0) =
∑∞

k=1 l/d
k, the distance from v0 to the Julia set J(F ).

Then h(vi) = h(v0) + l1 + · · ·+ li for each i = 1, · · · , N . The height of all other vertices is

determined by the relation h(F (v)) = d h(v).
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We now apply Theorem 5.1(1) to reconstruct the local model surfaces Xv over each vertex

v in S(T ). Setting the length of the central leaf to 2π, the heights of the inner and outer

annuli coincide with the length of the underlying edges of the trees, scaled by a certain

factor cv > 0. The factor cv is the reciprocal of the weight µF (J(F, v)) defined in (6.2);

the weight of v is computable from the first-return map (R,S(T )) because all vertices with

degree > 1 are contained in the spine.

By Theorem 5.1(2), the local model maps over the vertices in S(T ) can be reconstructed

from the lamination diagrams. Indeed, the degree is obtained by counting the number of

symbols of the form 0j and adding 1. Recall, however, that we are able to so reconstruct a

local model map only up to pre- and post-composition with rotational symmetries.

Since such symmetries consist entirely of rotations and must preserve all labels, the only

configurations of labelled lamination diagrams which are symmetric are those for which

all labels lie in a central gap which is fixed by this rotational symmetry. So suppose

R(v) = w = Fm(w), and consider the labelled lamination diagrams for Xv and Xw. We

now consider several cases.

(1) Suppose neither Xv nor Xw admit label-preserving symmetries. Then there is a

unique map Xv → Xw sending a label ki in Xv to the corresponding label (k +m)i
in Xw.

(2) Suppose Xv admits label-preserving symmetries but Xw does not. Then all labels

for Xv lie in a common central gap and the covering Xv → Xw is cyclic. Up to

isomorphism there is a unique such covering; we choose a representative arbitrarily.

Note that any two such choices differ by precomposition by an isometry which is a

symmetry of the labelled diagram for Xv, yielding a holomorphic conjugacy between

the two different extensions of the dynamics to Xv which is the identity on Xw.

(3) Suppose both Xv and Xw admit label-preserving symmetries. Again, all labels for

Xv and for Xw must lie in central gaps fixed by the rotational symmetries, and

the covering Xv → Xw is cyclic. By elementary covering space theory, given any

fixed covering Rv : Xv → Xw and any rotation β : Xw → Xw, there exists a lift

α : Xv → Xv of β under Rv. This lift α again yields a holomorphic conjugacy

between the two different extensions Rv and β ◦Rv of the dynamics to Xv which is

the identity on Xw.

Given any fixed covering Rv : Xv → Xw and any label-preserving symmetry

α : Xv → Xv, rotation by α−1 : Xv → Xv yields a holomorphic conjugacy between

the two different extensions Rv and Rv ◦ α of the dynamics to Xv which is the

identity on Xw.

The previous two paragraphs cover all sources of ambiguity in the extension of

the dynamics.

Thus as the induction proceeds, we see that at the inductive stage, we make choices for

the extension of the dynamics, but that different choices are holomorphically conjugate by

a map which affects only the surface over which the extension is made.

It follows that any two different collections of choices will yield holomorphically conjugate

dynamics R : S → S on the spine of the tree of local models.

The dynamical system (R,S) determines the full tree of local models by Theorem 7.2. �
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10.5. Abstract pictographs and Theorem 1.1. We defined the abstract tree of local

models in §7.2, and we proved in Theorem 7.1 that every abstract tree of local models arises

for a polynomial. An abstract pictograph is defined to be the pictograph associated to an

abstract tree of local models. Therefore, Theorem 1.1 is an immediate corollary of Theorem

7.1.

Proof of Proposition 10.3. Let (F ,X ) be an abstract tree of local models, and let D be

its pictograph. Fix any M > 0 to be the height of the highest critical vertex v0 in D, and

set h(c1) = M . Denote the vertices above v0 in ascending order by v1, v2, . . . , vN so the

lamination of vN contains the symbol 11 on its central leaf. We may choose any sequence of

heights M < h(v1) < h(v2) < · · · < h(vN ) = dM for these vertices. For each i = 2, . . . , d−1,

there is at most one j ∈ {1, . . . , N} for which a symbol ki lies on the central leaf over vj . If

such a j exists, then we set

h(ci) = h(vj)/d
k.

If no such j exists, then we set h(ci) = 0.

From Theorem 10.2, the pictograph with the data of critical escape rates uniquely deter-

mines the full tree of local models. �

11. Counting topological conjugacy classes in degree 3

In this section, we provide the the proofs of Theorems 4.1 and 4.2. These proofs are

inspired by the arguments of Branner in [Br, Theorem 9.1] and Harris in [Ha]. We conclude

the section by comparing our constructions in the case of degree 3 to those appearing in

[BH1], [BH2], and [Br].

11.1. The space of cubic polynomials. Let P3 ' C2 denote the space of monic and

centered cubic polynomials. It is a degree 2 branched cover ofM3. Explicitly, a polynomial

f(z) = z3 + az + b is conformally conjugate to g(z) = z3 + a′z + b′ if and only if they are

conjugate by z 7→ −z; consequently a = a′ and b = −b′. Therefore,M3 has the structure of a

complex orbifold with underlying manifold C2; the projection P3 →M3 is given by (a, b) 7→
(a, b2), and its branch locus {b = 0} is precisely the set of polynomials with a nontrivial

automorphism (necessarily of the form z 7→ −z). Observe that the critical points for cubic

polynomials with a nontrivial automorphism are interchanged by the automorphism; they

therefore escape at the same rate.

11.2. The length of a cubic polynomial. Fix a cubic polynomial f with disconnected

Julia set. Denote its critical points by c1 and c2, so that Gf (c1) ≥ Gf (c2). Recall from §2.1

that the length of f is the least integer L = L(f) such that Gf (c2) ≥ Gf (c1)/3
L. If no such

integer exists, we set L(f) =∞. Thus, L(f) =∞ if and only if c2 lies in the filled Julia set

of f ; and L(f) = 0 if and only if Gf (c1) = Gf (c2) > 0.

Lemma 11.1. Let D be a pictograph for a cubic polynomial of length L(f) = 0. There is

a unique topological conjugacy class of polynomials in M3 with pictograph D.
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Proof. Any length 0 cubic polynomial f has Gf (c1) = Gf (c2) = M for some M > 0. Fix

M > 0 and let (F ,X ) be the unique tree of local models with pictograph D and critical

height M . The underlying tree (F, T ) has a unique fundamental edge. Let v0 denote the

vertex at height M , and set v1 = F (v0). To construct any polynomial f with tree of local

models (F ,X ), we first glue the outer annulus of the local model surface (Xv0 , ωv0) to the

unique inner annulus of the local model surface (Xv1 , ωv1). The choice of gluing along

the fundamental edge uniquely determines the gluing choices of all local models above v0,

because the local model maps must extend holomorphically. Because L(f) = 0, the local

degree at all vertices below v0 is 1, and therefore the choice of gluing along the fundamental

edge also determines the gluing along every edge below v0. In other words, the gluing

at the fundamental edge determines the conformal conjugacy class of an entire basin. By

uniformization, we may conclude that this gluing choice determines a unique point in M3;

see e.g. [DP2, Lemma 3.4, Proposition 5.1].

Finally, it is easy to see from the definition of the twisting deformation that all choices

of gluing Xv0 to Xv1 can be obtained by twisting. Therefore, all polynomials in M3 with

tree of local models (F ,X ) are twist-conjugate. Combined with Theorem 10.3, it follows

that all polynomials in M3 with pictograph D are topologically conjugate. �

11.3. Reducing to the case of 1 fundamental edge. The main idea of the proofs of

Theorems 4.1 and 4.2 is the following. We begin with a tree of local models (F ,X ) with the

given pictograph, and we fix a point in the base torus of the bundle of gluing configurations

B3(F ,X ). In the absence of symmetry, the basepoint corresponds to a unique choice of

gluing along the fundamental edges of (F ,X ). That is, the conformal structure of the basin

at and above the highest critical point is fixed.

As usual, we let v0 denote the highest branching vertex of the tree, so the local model

surface at v0 contains a critical point. Inductively on descending height, we glue the local

models along the spine of (F ,X ) below the vertex v0. Each local model map below v0 has

degree 2, and there are exactly two ways to glue the local model surface so that the map

extends holomorphically. At each stage we determine which gluing choices are conformally

conjugate and which gluing choices are topologically (twist) conjugate.

It turns out that the only choices that contribute to our count of topological conjugacy

classes are those made at the vertices of the spine that map to v0. Suppose the given tree

has two fundamental edges, and let v be a vertex in the spine that does not lie in the grand

orbit of v0. Let e be the edge above v. If the forward orbit of the lower critical point

does not contain v, then the two gluing choices along e are easily seen to be conformally

conjugate. If the orbit of the lower critical point does contain v, then the distinct gluing

choices for the local model at v will always be topologically conjugate, as the following

lemma shows.

Lemma 11.2. Fix a tree of local models for a cubic polynomial with two fundamental edges.

Let v be a vertex in the spine, below v0 and in the forward orbit of the lower critical point.

Suppose we have glued all local models in the spine above vertex v. Then the two gluing

choices of (Xv, ωv) are topologically conjugate, via a conjugacy that preserves the orbit of

the lower critical point and leaves the conformal structure above v unchanged.
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Proof. Let f be any cubic polynomial with the given tree of local models (F ,X ). As (F ,X )

has two fundamental edges, f lies in the shift locus and the two critical points have distinct

escape rates; let c1, c2 denote the critical points so that Gf (c1) > Gf (c2). Let L = L(f) be

the length of f . The fundamental annulus is decomposed into two subannuli,

A2
0 = {Gf (fL(c2)) < |z| < 3Gf (c1)}

and

A1
0 = {Gf (c1) < |z| < Gf (fL(c2))},

which can be twisted independently.

For each 0 < n < L(f), denote by An the annular component of {Gf (c1)/3
n < |z| <

Gf (c1)/3
n−1} separating the two critical points. Let 0 < n1 < · · · < nm < L(f) index the

values of n for which the orbit of c2 intersects An. The vertex v corresponds to a level curve

of Gf in the annulus Ani for some i ∈ {1, . . . ,m}. We proceed inductively on i.

For i = 1, a full twist in A1
0 followed by a full twist in the opposite direction in A2

0

induces the opposite gluing choice for the local model surface (Xv, ωv) without affecting the

conformal class of the basin above v. This is because the annulus An1 maps with degree 2

by fn1 to the annulus A0; a full twist in A0 induces a half-twist in An1 .

Similarly for each i: the annulus Ani is mapped with degree 2i by fni to A0. Therefore,

2i−1 full twists in A1
0 followed by −2i−1 full twists in A2

0 will induce a half twist at the level

of v while preserving the conformal structure of the basin above v. �

11.4. Simplified pictographs. The simplified pictograph of a cubic polynomial, defined

in §2.2, is a subset of its pictograph: it consists of the laminations at vertices of height

Gf (c1)/3
n for all 0 ≤ n < L(f), where L(f) is the length of f , or of only the lamination

at height Gf (c1) for L(f) = 0. The lamination at level n (height G(c1)/3
n) is labelled by

integer 0 ≤ k ≤ L(f) − n, if fk(c2) lies in one of its gaps or on the level curve. Figure

2.3 shows the simplified pictograph for the example of Figure 10.2. Figure 11.1 contains

pictographs for two cubic polynomials with length L(f) = 1 and the simplified pictographs

for each of them.

For drawing diagrams, it is more convenient to use the simplified pictograph rather than

the full pictograph. The next lemma shows that we do not lose any information by doing

so.

Lemma 11.3. The pictograph can be recovered from the simplified pictograph.

Proof. For any polynomial f , the lamination at height 3Gf (c1) with its marked points is

uniquely determined by the marked lamination at height Gf (c1) (see Lemma 5.3). For

length L(f) = 0, this shows that the simplified pictograph determines the pictograph.

Similarly for length L(f) =∞.

Assume f is a cubic polynomial with finite length L(f) > 0. Observe that there are

marked points on the lamination at height Gf (c1) (not just in the gaps) if and only if f has

one fundamental edge, meaning that Gf (c2) = Gf (c1)/3
L(f). In this case, the simplified

pictograph is almost the complete pictograph. The lamination diagram containing the

critical point c2 is also uniquely determined: it is a degree 2 branched cover of the lamination
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Figure 11.1. Length 1 cubics: (a) a pictograph, with critical heights

(M,M/3); (b) the simplified pictograph for the pictograph of (a); (c) the

generic pictograph at level 1, with critical heights (M,M ′) where M/3 <

M ′ < M ; (d) the simplified pictograph for the pictograph of (c).

at level n, where n is the greatest integer such that the symbol L(f)−n marks the lamination

at height Gf (c1)/3
n, branched over the marked point.

In the case of two fundamental edges, it is easy to see how to fill in the pictograph. We

first add the subscript “2” to teach of the labels in the simplified pictograph, and we mark

the unique non-trivial equivalence class at the height of c1 with the symbol 01. We next

include the trivial lamination (a circle) to the column of lamination diagrams above each

lamination of the simplified pictograph. These laminations correspond to vertices in the

spine intersecting the grand orbit of the second critical point c2, except at the height of c2
itself. The lamination at the height Gf (c2) will be the “figure 8”: it is a circle cut by a

diameter; the diameter is marked with the symbol 02. Finally, at each height Gf (c1)/3
n

where the symbol (L(f) − n − 1)2 appears in the same component as the symbol 02, we

mark the trivial lamination below it with the symbol (L(f)− n− 1)2, in one of two ways:

(1) if (L(f)− n− 1)2 also appears at height Gf (c1)/3
n+1 then we place (L(f)− n− 1)2 in

the gap, and (2) otherwise, we place the symbol on the lamination circle.

From the definition of the pictograph, we see that this is the complete diagram. �

11.5. Marked levels and the τ sequence. Fix a cubic polynomial f with a disconnected

Julia set; let L(f) be its length, so Gf (c2) = Gf (c1)/3
L(f). For each 0 ≤ n ≤ L(f), the level
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n puzzle piece Pn is the connected component of {G < G(c1)/3
n−1} containing c2. Note

that P0 contains both critical points and fn(Pn) = P0 for all n. The Yoccoz τ -function

associated to f ,

τf : {1, 2, 3, . . . , L(f)} → N,
is defined by the following: let k(n) = min{k > 0 : c2 ∈ fk(Pn)}; then fk(n)(Pn) = Pτf (n).

In particular, τf (1) = 0 and τf (i+ 1) ≤ τf (i) + 1 for all i and every f with L(f) > 0. The

data of τf is equivalent to the information in the tableau (or marked grid) of f defined in

[BH2]. In §3.1, we showed how to read the τ -sequence off from the simplified pictograph of

f .

We defined the notion of marked levels in §4.1, but we recall the definition here. For each

n ≥ 0, let Bn be the closed subset of the level n puzzle piece Pn where Gf (z) ≤ Gf (c1)/3
n.

A marked level is an integer n > 0 where the orbit of c2 intersects Bn \ Pn+1.

Lemma 11.4. A level n > 0 is marked if and only if at least one of the following holds:

(1) there exists i < L(f) so that τ(i) = n and τ(i+ 1) ≤ n;

(2) Gf (c2) = Gf (c1)/3
L(f) and n = τk(L(f)) for some k > 0.

The proof is immediate from the definitions. From this lemma, we see that a marked level co-

incides with the “semi-critical” levels of [Mi1] and with the “off-center” levels n0, n1, . . . , nj
of f of [Br, Theorem 9.1] when L(f) =∞.

In terms of the simplified pictograph and symmetries, we may characterize the marked

levels as follows.

Lemma 11.5. The marked levels coincide with the degree 2 vertices of the simplified pic-

tograph where the order of rotational symmetry is 1.

Again the proof is immediate from the definitions. The marking of a level n means that the

symmetry is broken at that level.

11.6. Counting topological conjugacy classes. We begin by defining relative moduli

and twist periods, quantities involved in the computations of Theorems 4.1 and 4.2. Relative

moduli were first defined in §4.1.

Let (F ,X ) be a tree of local models with a given pictograph D. Let S be the spine

of (F ,X ) and suppose we have chosen a gluing of all the local models along S. From

Proposition 7.3, the gluing choices along S, together with its first-return map, uniquely

determine a complete basin of infinity (f,X(f)). Let c1 and c2 denote the critical points of

f so that Gf (c1) ≥ Gf (c2). Let L(f) be the length. Let

A0 = {z : Gf (c1) < |z| < 3Gf (c1)}

denote the fundamental annulus. For each 0 < n < L(f), denote by An the annular

component of {Gf (c1)/3
n < |z| < Gf (c1)/3

n−1} separating the two critical points.

For each 0 ≤ n < L(f), the relative modulus at level n is the ratio

m(n) = mod(An)/mod(A0).

Note that m(n) is completely determined by the τ -sequence τf . In fact, m(n) = 2−k(n),

where k(n) the least integer such that τk(n)(n) = 0. That is, k(n) counts the number of

times the orbit of An intersects the set {A0, . . . , An−1}.
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Note also that a full twist in A0 induces a m(n)-twist in the annulus An. For each

n < L(f), the twist period of the basin (f,X(f)) at level n is the minimum number of

twists Tn > 0 in the fundamental annulus A0 that returns all marked levels ≤ n to their

original gluing configuration. This means that the induced twist, summing along the annuli

from A0 down to each marked level j ≤ n, must be integral.

We shall see in the proof of Theorem 4.1 that these twist periods can be computed from

the τ -sequence and are independent of the choice of gluing configuration.

Proof of Theorem 4.1. Let D be a pictograph with finitely many marked levels. Fix M > 0,

and let (F ,X ) be any tree of local models with pictograph D and maximal critical height

M . Let L(f) denote the length of any cubic polynomial basin with tree of local models

(F ,X ). If both critical points have the same height, the length is L(f) = 0, there are no

marked levels, and we are done by Lemma 11.1. We may assume that the critical points

have distinct heights.

Fix a point in the base torus for the bundle B3(F ,X ). By Lemma 8.5, there are no sym-

metries at the fundamental vertices; it follows that the base torus parametrizes the gluing

choices in the fundamental edges. From the structure of the bundle of gluing configurations,

it follows that each point in the fiber corresponds to a unique conformal conjugacy class

of basins (with the chosen gluing configuration above height M); the topological conjugacy

classes are in one-to-one correspondence with their orbits under twisting. As described in

§11.3, we will proceed inductively, on descending height, to glue the local models along the

spine. By Lemma 11.2, we may disregard the gluing choices at the “intermediate levels”,

corresponding to vertices in the grand orbit of the lower critical point, when there are two

fundamental edges. At each vertex of height M/3n, for integers 0 < n < L(f), we will

compute the number of distinct topological conjugacy classes arising from the two gluing

choices.

First assume that (F ,X ) has no marked levels. Then for every n, the two gluing choices

of the local model at height M/3n are conformally equivalent. If there are two fundamental

edges, we conclude from Lemma 11.2 that there is a unique topological conjugacy class. If

there is only one fundamental edge, then in fact there is a unique point in any fiber of the

bundle B3(F ,X ), so clearly Top(D) = 1. Note that the absence of marked levels can be

discerned from the τ -sequence of D, by Lemma 11.4.

Suppose now that (F ,X ) has k > 0 marked levels, and let

0 < l1 < l2 < · · · < lk < L(f)

denote the marked levels. Let mj be the sum of relative moduli to level lj :

mj =

lj∑
n=1

m(n).

Let tj be the smallest positive integer so that tjmj is integral; it is always a power of 2,

because the vertices of the spine (below v0) are mapped with degree 2 to their images. Then

the twist period at level lj is easily seen to be the maximum

Tlj = max{ti : i ≤ j}.
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Lemma 11.6. We have Tlj ∈ {Tlj−1
, 2Tlj−1

} for all j.

Proof. Suppose it takes t full twists to return to a given configuration at marked level l, and

suppose the next marked level is l′ > l. The level τ(l′) must also be a marked, so τ(l′) ≤ l.
Thus, after t twists, τ(l′) is in its original configuration; therefore l′ must be either in its

original configuration or twisted halfway around. Therefore, at most 2t twists are needed

to return to the original configuration at level l′. �

Lemma 11.6 says that the twist period between marked levels can increase at most by

a factor of two. It follows that twisting reaches all possible gluing configurations if and

only if Tlk = 2k. Or, more precisely, the number of distinct topological conjugacy classes

associated to the given tree of local models is the ratio 2k/Tlk . This completes the proof of

the theorem. �

Proof of Theorem 4.2. Suppose D is a pictograph with infinitely many marked levels.

For any fixed value M > 0, there is a unique tree of local models (F ,X ) with the given

pictograph D and critical point at height M . Note that the infinitely many marked levels

implies, in particular, that one critical point lies in the filled Julia set.

As in the proof of Theorem 4.1, we begin by fixing a point in the base torus of B3(F ,X ).

Note that the base torus is a circle in this case. At each marked level of the pictograph,

the two gluing choices produce conformally inequivalent basins in B3(F ,X ); it follows that

there are infinitely many points in any fiber of B3(F ,X ). From Lemma 9.5, the fiber is then

homeomorphic to a Cantor set; in particular, there are uncountably many points in the fiber.

On the other hand, two basins in a fiber are topologically conjugate if and only if they lie

in the same twist orbit; thus, there can only be countably many topologically conjugate

points in a fiber. Therefore, there are infinitely many topological conjugacy classes within

B3(F ,X ).

As proved in [BH2] and discussed further in [Br] and [Ha], the topological conjugacy

classes in the cubic moduli space M3 organize themselves into solenoids or a union of

circles, depending on the twist periods. In the notation of the proof of Theorem 4.1, the

twist period of a complete basin with tree (F ,X ) is the value

T = lim
j→∞

Tlj .

If T is infinite, then necessarily the bundle of gluing configurations is a union of

Sol(D) := lim
j→∞

2j

Tlj

solenoids. Note that the limit Sol(D) exists and lies in the set {1, 2, 22, 23, . . . ,∞}, because

2j/Tlj defines a non-decreasing sequence of powers of 2. For T < ∞, the bundle of gluing

configurations forms an infinite union of closed loops. �

11.7. The Branner-Hubbard description. Branner and Hubbard showed that there

are two important dynamically-defined fibrations in the space of monic and centered cubic

polynomials P3. Let C3 denote the connectedness locus, the set of polynomials in P3 with
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Figure 11.2. A fiber of Φr showing critical level sets of f 7→ Gf (c2), from

[BH2, Figure 9.3].

connected Julia set. First, the maximal critical escape rate

M : P3 \ C3 → (0,∞)

defined by

M(f) = max{Gf (c) : f ′(c) = 0}

is a trivial fibration with fibers homeomorphic to the 3-sphere [Br, Theorem 6.1] (which

follows from [BH1, Theorem 11.1, Corollary 14.6]). Branner and Hubbard analyzed the

quotient of a fiber of M in M3; it follows from [BH1, Cor 14.9] that the induced map

M :M3 \ C3 → (0,∞)

is also trivial fibration with fibers homeomorphic to the 3-sphere. The trivialization is given

by the stretching deformation; see §9.2.

For each r > 0, let Hr ⊂ M−1(r) ⊂ P3 be the locus of polynomials with G(c2) <

G(c1) = r. Let c′1 denote the cocritical point of c1, so that f−1(f(c1)) = {c1, c′1}, and let

θ(c′1) ∈ R/2πZ be its external angle. Then

Φr : Hr → S1

defined by Φr(f) = θ(c′1) is a trivial fibration with fibers homeomorphic to the unit disk D
[Br, Theorem 6.2]. The fiber of Φr over θ will be denoted Fr(θ). Note that every polynomial

in Fr(θ) is conjugate by z 7→ −z to a unique polynomial in Fr(θ+π). (It is worth observing

that the polynomials with nontrivial automorphism cannot be in Hr; the automorphism

interchanges the two critical points, so they must at the same rate.)

The turning deformation of [BH1] induces a monodromy action on a fiber Fr(θ); its first

entry into Fr(θ+π) determines the hemidromy action. Alternatively, the hemidromy action

is the monodromy of the induced fibration on the quotient of Hr in M3:

Φr : [Hr]→ S1

given by Φr(f) = 2θ(c′1) mod 2π which is well-defined on the conjugacy class of f . The

fibers of Φr in M3 are again topological disks.
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Let us fix θ = 0 and consider the fiber [Fr(0)] in M3. The hemidromy action on this

fiber will be denoted

Tr : [Fr(0)]→ [Fr(0)].

It corresponds to a full twist in the fundamental annulus; compare §9.2. The escape rate

of the second critical point further decomposes [Fr(0)]. The critical level sets of G(c2) are

precisely the levels r/3n for integers n > 0. The connected components of {G(c2) < r/3n}
are called the level n disks. The hemidromy action permutes these disks. The period of a

level n disk D is the least number of iterates p > 0 such that T pr (D) = D. Branner-Hubbard

showed that these periods are always powers of 2. The period of the level n disk coincides

with the twist period Tn (defined in §11.6) for any cubic polynomial in that disk.

Suppose (F ,X ) is a cubic tree of local models with both critical heights positive. If

there is only one fundamental edge, then the Branner-Hubbard turning curves through

any polynomial f with tree (F ,X ) constitute the connected components of the bundle

B3(F ,X ). In fact, twisting coincides with the turning deformation, up to the normalization

of the parametrization. For a cubic tree (F ,X ) with two fundamental edges, the base torus

of B3(F ,X ) is two-dimensional. Intersecting with a fiber of the Branner-Hubbard bundle

Φr, the bundle B3(F ,X ) consists of finitely many connected components of a level set of

f 7→ Gf (c2). In this case, a full turn around the base of Φr : [Hr] → S1 corresponds to a

twist by
m1

m1 +m2
e1 +

m2

m1 +m2
e2

where mi is the modulus of the fundamental annulus Ai, so that m1 +m2 = 2r.

Among the polynomials f with length L(f) = ∞, there are two types of connected

components in the Branner-Hubbard slice Fr(0). They showed that the Mandelbrot sets in

their picture correspond to cubic polynomials where the connected component of the filled

Julia set containing the critical point is periodic. Equivalently, the tableau is periodic. The

twist periods of these Mandelbrot sets are always finite; there are only finitely many marked

levels in the corresponding pictograph. In this case, the bundle B3(F ,X ) is a finite union of

circles. Branner and Hubbard proved that all other cubic polynomials with infinite length

correspond to points in their slice. For these polynomials, the bundle B3(F ,X ) may be a

union of circles or a union of solenoids.

12. Counting argument, all degrees

In this final section, we give the proof of Theorem 1.2. We apply the algorithm to two

examples in degree 5 (§12.7 and §12.8) to illustrate the role of the symmetry calculations.

We provide an example of a pictograph associated to multiple topological conjugacy classes

in any degree d > 2 (§12.9).

Towards Theorem 1.2, we have already established the topological-conjugacy invariance

of the pictograph (Theorem 10.1). Here, we show:

Theorem 12.1. Let D be a pictograph. The number Top(D) of topological conjugacy classes

of basins (f,X(f)) with pictograph D is inductively computable from the discrete data of D.
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Specifically, the computation depends only on the first-return map along the spine (R,S(T ))

of the underlying tree and the automorphism group of the full tree of local models.

It is useful to compare this statement to those of Theorems 4.1 and 4.2 containing the degree

3 computation. In degree 3, the data of (R,S(T )) is equivalent to the Branner-Hubbard

tableau and Yoccoz τ -sequence; see §6.7. Also in degree 3, the symmetries of the tree of

local models are easy to describe. Recall that the automorphism group is itself inductively

computable from a pictograph in all degrees; see Section 8.

For the general degree case, we introduce the restricted basin of infinity for a polynomial,

with a notion of equivalence that carries information from the full tree of local models. This

allows us to define an analog of the “marked levels” in degree 3 (see §11.5). We introduce

the lattice of twist periods to generalize the sequence of twist periods used to compute the

number of conjugacy classes in degree 3. In higher degrees, the markings and symmetries

are significantly more complicated, so computing the number of twists needed to return to

a given gluing configuration involves more ingredients.

12.1. Restricted basins, conformal equivalence. Let (f,X(f)) be a basin of infinity.

Fix any real number t > 0. Let Gf denote the escape-rate function on X(f), and set

Xt(f) = {z ∈ X(f) : Gf (z) > t}.

We refer to the pair (f,Xt(f)) as a restricted basin. We define in the obvious way restricted

trees and restricted trees of local models. However, here we introduce a special, and un-

obvious, notion of equivalence of restricted basins that will be useful in the proof of Theorem

12.1.

Let (F1,X (f1)) and (F2,X (f2)) denote the trees of local models for the basins (f1, X(f1))

and (f2, X(f2)), respectively. By construction, there are gluing quotient maps

gi : (Fi,X (fi))→ (fi, X(fi))

that are conformal isomorphisms from each local model surface to its image, inducing con-

jugacies between the restrictions of Fi and fi.

We say the restricted basins (f1, Xt(f1)) and (f2, Xt(f2)) are conformally equivalent over

(F ,X ) if their unrestricted trees of local models are both isomorphic to (F ,X ), and there

exists a conformal isomorphism

ϕ : Xt(f1)→ Xt(f2)

inducing a conjugacy between the restrictions f1|Xt(f1) and f2|Xt(f2) that extends to the

full tree of local models. Specifically, there is an isomorphism between trees of local models

Φ : (F1,X (f1))→ (F2,X (f2))

which restricts to the induced isomorphism ϕ̃ on the restricted trees, at heights > t, defined

by lifting ϕ via the gluing quotient maps gi:

(F1,Xt(f1))
ϕ̃ //

g1
��

(F2,Xt(f2))

g2
��

(f1, Xt(f1)) ϕ
// (f1, Xt(f2))
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Similarly, we define Aut(F ,X )(f,Xt(f)) to be the group of conformal automorphisms of

the restricted basin (f,Xt(f)) that extend to automorphisms of the tree (F ,X ). Denoting

by Aut(f,X(f)) and Aut(f,Xt(f)) the groups of conformal isomorphisms (of X(f) and

Xt(f), respectively) commuting with f , we find:

Lemma 12.2. For any basin of infinity (f,X(f)) of degree d ≥ 2, and any t > 0, we have

a chain of subgroups

Aut(f,X(f)) ⊂ Aut(F ,X )(f,Xt(f)) ⊂ Aut(f,Xt(f)) ⊂ Cd−1,

where Cd−1 is the cyclic group of order d − 1, acting by rotation in the uniformizing coor-

dinates near ∞.

Proof. The first two inclusions follow easily from the definitions. Indeed, any automorphism

of a basin (f,X(f)) induces an automorphism of the tree of local models and of any restricted

basin. The last inclusion follows because an automorphism of (f,Xt(f)) must commute with

f near infinity, where it is conformally conjugate to zd. �

12.2. Restricted basins, topological equivalence. As for conformal equivalence of re-

stricted basins, defined in §12.1, we say restricted basins (f1, Xt(f1)) and (f2, Xt(f2)) are

topologically equivalent over (F ,X ) if there exists a topological conjugacy

ψ : Xt(f1)→ Xt(f2)

that extends to an isomorphism of the full tree of local models.

It is important to observe that topologically conjugate restricted basins are also quasi-

conformally conjugate; the proof is identical to the one for full basins of infinity. Further,

if the restricted basins come from basins with the same critical escape rates, the quasicon-

formal conjugacy can be taken to be a twist deformation. On each level set of Gf , the

twist deformation acts by isometries (in the |∂Gf | metric), and therefore it preserves the

conformal structure of the local models in the tree of local models (compare the proof of

Theorem 9.1). This proves:

Lemma 12.3. A topological conjugacy between restricted basins (f1, Xt(f1)) and (f2, Xt(f2))

with the same critical escape rates induces, via the gluing quotient maps, an isomorphism

of restricted trees of local models (F1,Xt(f1)) and (F2,Xt(f2)).

In the definition of topological equivalence of restricted basins, then, we are requiring that

this induced isomorphism of restricted trees of local models can be extended to an isomor-

phism on the full tree of local models.

12.3. Twist periods. As described in §9.2, a quasiconformal deformation of a basin of

infinity has a canonical decomposition into its twisting and stretching factors. Fix f ∈Md

and consider the analytic map of §9.3,

Twistf : RN →Md,

which parametrizes the twisting deformations in the N fundamental subannuli of f , sending

the origin to f . Recall that the basis vector

ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ RN
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induces a full twist in the j-th fundamental subannulus.

A twist period of f is any vector τ ∈ RN which preserves the conformal conjugacy class

of (f,X(f)); that is, Twistf (τ) = Twistf (0). When f is in the shift locus, the set of twist

periods forms a lattice in RN [DP1, Lemma 5.2]. In general, the set of twist periods forms

a discrete subgroup (though possibly not a lattice),

TP(f) ⊂ RN ,

that we will refer to as the lattice of twist periods. As we shall see in the proof of Theorem

12.1, polynomials with equivalent pictographs can have different lattices of twist periods;

this can happen when one gluing configuration has automorphisms while another does not.

Nevertheless, we will see that the possibilities for TP(f) can still be computed from the

data of the pictograph.

For each t > 0, we define TPt(f) ⊃ TP(f) to be the set of vectors τ ∈ RN that pre-

serve the conformal equivalence class of the restricted basin (f,Xt(f)) over (F ,X (f)); the

equivalence of restricted basins was defined in §12.1.

Lemma 12.4. For any t1 > t2 > 0 and any f with N fundamental subannuli, each group

TPti(f) forms a lattice in RN , with index [TPt1(f) : TPt2(f)] <∞ and

TP(f) =
⋂
t>0

TPt(f).

Proof. The argument is similar to the proof of [DP1, Lemma 5.2]. Let Xt(f) = {Gf >
t} ⊂ X(f). For each fundamental subannulus Aj , there are only finitely many connected

components Bj of preimages of Aj inside Xt(f) under any iterate of f . A full twist in the

annulus Aj induces a 1/k-twist in a preimage Bj , where k is the local degree of the iterate

fn sending Bj to Aj . Let

dj = lcm{k : k = deg(fn|Bj → Aj)}

over all such components Bj ⊂ Xt(f). Then the subgroup TPt(f) of RN must contain the

vector

dj ej = (0, . . . , 0, dj , 0, . . . , 0)

for each j; indeed, this vector induces an automorphism of (f,Xt(f)) that extends to the

identity automorphism on the full tree of local models. Because TPt(f) is a discrete

subgroup of RN , we see that it must be a lattice. The same argument also shows that

[TPt1(f) : TPt2(f)] <∞.

Finally, if τ ∈ TP(f), then τ must induce an equivalence of the restricted basin (f,Xt(f))

over (F ,X (f)) for every t > 0, because a conjugacy between basins induces an equivalence

on trees of local models. Therefore,

TP(f) ⊂
⋂
t>0

TPt(f).

Conversely, we observe that if τ · (f,Xt(f)) is conformally equivalent to (f,Xt(f)) for all

t > 0, then there is a conformal conjugacy between the basins τ · (f,X(f)) and (f,X(f)),

so τ ∈ TP(f). We conclude that TP(f) =
⋂
t>0 TPt(f). �
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12.4. Twist periods in degree 3. We remark that the definition of twist period given

here differs from that given in §11.6 for degree 3 maps. They coincide in the case of one

fundamental annulus, in the sense that the twist periods {Tn} form a sequence of generators

for the one-dimensional twist lattices TPtn(f) ⊂ R for heights tn just below level n.

A cubic polynomial f with two fundamental subannuli is necessarily in the shift locus

(and structurally stable) with finite length L(f) > 0. We describe here how to recover

the sequence of twist periods Tn at levels 0 ≤ n < L(f) from the lattices of twist periods

TPt(f).

For a cubic polynomial f with two fundamental subannuli, let (F, T (f)) denote its tree,

let v0 be the highest branching vertex of T (f), and let h : T (f)→ R be the height function.

Choose a sequence of descending heights

(12.1) t0 > t1 > t2 > · · ·

so that tn is a height “just below” a vertex of simplicial distance n from v0. That is,

t0 = h(v0)−ε for any sufficiently small ε > 0, and there is a unique vertex in each connected

component of h−1(tn+1, tn).

From the definitions, and the absence of symmetries at v0, we have T0 = 1 and

TPt0 = 〈e1, e2〉 = Z2 ⊂ R2

for every such polynomial.

Let S(T ) the spine of the tree (F, T (f)). Denote by w the lowest vertex in the spine (the

lower critical point). For each positive integer n < L(f), set

J(n) = #{L(f)− n ≤ j < L(f) : F j(w) ∈ S(T )},

the number of times the critical orbit intersects the spine, above level n and below v0. From

the proof of Theorem 12.1 given below, an inductive argument shows that

(12.2) Tn =
[TPt0 : TPt2n ]

2J(n)
.

12.5. A cubic example. Because the computation of the twist period lattices is crucial

in the proof of Theorem 12.1, we illustrate with an example in degree 3.

Consider the cubic pictograph shown in Figure 12.1. It is the unique pictograph associated

to the τ -sequence (0, 1, 2, 3) with two fundamental edges. Any associated polynomial has

length L(f) = 4. There are no marked levels, in the sense defined in §11.5. Consequently,

T0 = T1 = T2 = T3 = 1. From Theorem 4.1, there is a unique topological conjugacy class

of cubic polynomials with this pictograph.

Now let {tn} be a descending sequence of escape rates, as defined in (12.1). Every

polynomial f with this pictograph has the following lattices of twist periods:

TPt0 = 〈e1, e2〉
TPt1 = TPt2 = 〈e1, 2e2〉
TPt3 = TPt4 = 〈2e1, e1 + 2e2〉

TPtn = 〈4e1, 3e1 + 2e2〉 for all n ≥ 5
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Figure 12.1. A cubic pictograph with τ sequence (0, 1, 2, 3). Its twist pe-

riods are computed in §12.5.
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These lattices are computed inductively with n, with the base case TPt0 = 〈e1, e2〉. To

determine TPtn from TPtn−1 , we compute the induced twisting at each vertex of the spine,

down to height tn, for elements of TPtn−1 . Specifically, let v be the lowest vertex in the

spine above height tn, and fix τ = τ1e1 + τ2e2 ∈ TPtn−1 . We compute (1) the relative

modulus of mod(e) of each edge e in the spine (as the reciprocal of the degree by which e

maps to a fundamental edge) down to the vertex v, and (2) the sum

Rτ (v) =
∑
e

τj(e) mod(e)

where j(e) is the index of the fundamental edge in the orbit of e. If the lamination diagram

at vertex v is invariant under rotation by the amount Rτ (v) (leaving also all labels invariant),

then τ ∈ TPtn . If not, we consider integer multiples of τ .

Finally, TP(f) = 〈4e1, 3e1 + 2e2〉 by Lemma 12.4. Observing that J(n) = n for each

n = 1, 2, 3, we also see that equation (12.2) holds.

12.6. Proof of Theorem 12.1. Fix a pictograph D. We aim to show that the num-

ber Top(D) of topological conjugacy classes of basins (f,X(f)) with pictograph D can be

inductively computed from the discrete data of D.

For any M > 0, there exists a vector of compatible critical heights with maximal critical

height M . Let (F ,X ) be the tree of local models with pictograph D and the chosen vector

of critical heights given by Proposition 10.2. Let (F, T ) be the underlying polynomial tree

with height function h : T → (0,∞), so that h(v0) = M for the highest branching vertex v0
and h(Fx) = d · h(x) for all x ∈ T . Choose a descending sequence of real numbers

t−1 > M > t0 > t1 > t2 > · · · > 0

so that

• the points of h−1(ti) are not vertices of T for any i ≥ 0, and

• there is a unique vertex of T in each connected component of h−1[ti, ti−1] for all

i ≥ 0.

For each i ≥ 0, we will inductively compute the number Top(D, i) of topological conjugacy

classes of restricted basins

f : Xti(f)→ Xti(f)

over (F ,X ); the equivalence was defined in §12.2.

The number Top(D) is not simply the limit of these numbers Top(D, i) as i→∞, as we

shall see, but it can be determined from the sequence {Top(D, i)}i and the data used to

compute it.

Let i = 0. The conformal equivalence class of the restricted basin (f,Xt0(f)) over (F ,X )

depends only on the gluing along each of the fundamental subannuli. It is easy to see,

from the definition of twisting, that all gluing choices within the fundamental annulus are

equivalent under twisting. We conclude that

Top(D, 0) = 1

for any pictograph D.

For the induction argument, we need to compute the lattice of twist periods TPt0(f) and

the automorphism group Aut(F ,X )(f,Xt0(f)) for any choice of restricted basin (f,Xt0(f))
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from the discrete data of D at and above the vertex v0 and automorphism group Aut(F ,X ).

Recall that the automorphism group of the full tree of local models is isomorphic to the

automorphism group of the first-return map (R,S) on the spine (Lemma 8.4), so any

information we need about Aut(F ,X ) is determined by D.

Suppose D has N fundamental edges (so any basin with pictograph D has N funda-

mental subannuli). As usual, we label the ascending consecutive vertices v0, v1, . . . , vN =

F (v0), vN+1, . . . in the tree (F, T ), where v0 is the highest branching vertex. In §8.2, we

defined the order of local symmetry of the tree (F ,X ) at the vertex vj ; we denote this order

by kj .

Lemma 12.5. For each j ≥ 0, the orders of symmetry at vj and vj+N satisfy

kj+N = kj/ gcd(kj , d).

Proof. The local degree of F at each vertex vj is d. From Lemma 5.4, we know that

kj/ gcd(kj , d) must divide kj+N . On the other hand, by the definition of the local symmetry

order (coming from an automorphism of (F ,X )), any symmetry at vj+N must lift to the

domain vj . Therefore, we have equality. �

Lemma 12.6. The automorphism group Aut(F ,X )(f,Xt0(f)) is cyclic of order equal to

α = gcd{k0, k1, . . . , kN−1, d− 1}.

Proof. From Lemma 12.5, the value α will divide the orders of local symmetry at every

vertex vj , j ≥ 0. Further, a rotation by 2π/α at any vertex vj in the tree (F ,X ) will

induce a rotation by 2πd/α ≡ 2π/αmod 2π at its image, because α|(d − 1). Therefore,

rotation by 2π/α can act on any gluing of (F ,X ) to form a restricted basin (f,Xt0(f)).

The automorphism must extend to the full tree of local models, by the definition of the

orders kj . It follows that the order of Aut(F ,X )(f,Xt0(f)) is at least α. On the other hand,

the order of any element in Aut(F ,X )(f,Xt0(f)) must divide α, combining the definitions

with Lemma 5.4. �

Fix a conformal equivalence class of restricted basin (f,Xt0(f)) over (F ,X ). To compute

TPt0(f), note first that each of the basis vectors

ej = (0, . . . , 0, 1, 0, . . . , 0)

for j = 1, . . . , N , are contained in TPt0(f), by construction. Indeed, a full twist in any

subannulus induces the identity automorphism on the tree of local models (F ,X ).

We claim that for each 0 < j < N , the twist vector

τj =
1

kj
(ej+1 − ej)

is also contained in TPt0(f). This vector τj twists by 1/kj in the fundamental subannulus

Aj+1 and by −1/kj in Aj . It therefore twists by the order of symmetry at the vertex vj ,

and it induces a twist by d/kj in the image of Aj+1 and by −d/kj in the image of Aj . By

Lemma 12.5, these twists commute with the action of f . The restricted basins (f,Xt0(f))

and τj · (f,Xt0(f)) are conformally conjugate; for kj > 1, the isomorphism extends to a

non-trivial isomorphism of the underlying tree of local models where the action on (F ,X )

rotates vertices in the grand orbit of vj .
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Finally, we treat the symmetry at v0. Set

τ0 =
1

k0
(e1 − d eN ).

As for τj , j > 0, the twist vector τ0 induces the symmetry at v0. The term (d/k0) eN
is subtracted off so that the correct order of symmetry is induced at the image vN , as in

Lemma 12.5. Putting the pieces together, we find that TPt0(f) is generated by all twist

vectors of the form

τ = (a1, . . . , aN ),

where 0 ≤ aj ≤ 1,
∑N

j=j0
aj is an integer multiple of 1/kj0−1 for each j0 > 1, and

∑N
j=1 aj

is an integer multiple of (1− d)/k0 mod 1. Observe that this computation is independent of

the initial choice of restricted basin (f,Xt0(f)).

Now fix i ≥ 0 and a restricted basin (f,Xt0(f)). Let Bi(D) denote the set of conformal

equivalence classes of restricted basins (f,Xti(f)) over (F ,X ) that extend the restricted

basin (f,Xt0(f)). Suppose we have computed

(1) the number of conformal equivalence classes |Bi(D)|;
(2) the order of the automorphism group Aut(F ,X )(f,Xti(f)) for each element of Bi(D);

and

(3) the lattice of twist periods TPti(f) for each element of Bi(D).

As explained above, the conformal classes in Bi(D) are topologically equivalent if and only

if they are equivalent by twisting, via a conjugacy that extends to an isomorphism of the

full tree of local models, so we need only compute the number of classes in each twist orbit

to obtain Top(D, i) from this data. That is,

(12.3) Top(D, i) =
∑

(f,Xti (f))∈Bi(D)

1

[TPt0(f) : TPti(f)]
.

Now we pass to i + 1. Let {(Xv, ωv)} be the set of local models in the spine of (F ,X )

with vertex v in the height interval (ti+1, ti). Let dv be the degree of the local model map

with domain (Xv, ωv). Let kv be the order of local symmetry of (F ,X ) at v.

Fix a conformal class (f,Xti(f)) ∈ Bi(D), and assume that Aut(F ,X )(f,Xti(f)) is the

trivial group. Then the number of classes in Bi+1(D) that extend (f,Xti(f)) is given by∏
v

dv
gcd(kv, dv)

,

where the product is taken over all vertices v of the spine in the height interval (ti+1, ti).

Indeed, the extension to height ti+1 along any edge of degree 1 is uniquely determined. We

need only compute how many distinct ways we may glue each local model (Xv, ωv) of degree

dv > 1 along the edge above v so that f extends holomorphically. The absence of automor-

phisms shows that the local symmetry (fixing v) and local degree are the only contributing

factors. It is easy to see that each extension will also have a trivial automorphism group.

Now suppose (f,Xti(f)) ∈ Bi(D) has automorphism group Aut(F ,X )(f,Xti(f)) of order

m > 1. By Lemma 12.2, the automorphism group is cyclic, acting by rotation in the

uniformizing coordinates near infinity. By construction, every such automorphism extends

to the full tree of local models, so there is a certain amount of symmetry among the vertices
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in the height interval (ti+1, ti). First, there is at most one vertex v′ in the spine at this

height fixed by the automorphism of order m, and m must divide the local symmetry kv′ .

All other vertices v of the spine have orbit of length m, and the order of local symmetry kv
is constant along an orbit. Choose a representative vertex v̂ for each orbit. The number of

conformal classes in Bi+1(D) extending (f,Xti(f)) are organized as follows. There are

N(m) =
dv′

gcd(kv′ , dv′)
·

∏
orbits of length m

dv̂
gcd(kv̂, dv̂)

conformal conjugacy classes of extensions with an automorphism of order m; indeed, a

choice of gluing at vertex v̂ determines the choice (up to local symmetry) at each vertex in

its orbit. For each factor l|m, we can also compute the number of extensions of (f,Xti(f))

with automorphism of order l. A simple inclusion-exclusion argument shows that there are

N(l) =
dv′

gcd(kv′ , dv′)
·

∏
orbits of length l

dv̂
gcd(kv̂, dv̂)

−
∑

{l′ : l|l′|m, l′ 6=l}

N(l′)

conformal equivalence classes of extensions with an automorphism of order l, under the

extra restriction that we require the equivalence to act by the identity on the restriction

(f,Xti(f)). Consequently, there are
l

m
·N(l)

distinct conformal equivalence classes of extensions with automorphism of order l (without

the extra assumption): for each new basin in the initial count of N(l), there is an isomor-

phism that acts as rotation by l/m near infinity, producing another gluing configuration in

the count of N(l). We observe that the computation depends only on the data {dv, kv} at

each of the vertices in the spine.

Now we compute the lattice of twist periods TPti+1(f) for each class (f,Xti+1(f)) ∈
Bi+1(D). Note that any element τ ∈ TPti+1(f) also induces a conformal equivalence of the

restricted basin (f,Xti(f)) over (F ,X ), so TPti+1(f) forms a subgroup of TPti(f). We will

examine linear combinations of basis elements of TPti(f) to determine which elements lie

in TPti+1(f). We need to use the order of the automorphism group of the chosen basin

(f,Xti+1) and the order of the automorphism group of the restriction (f,Xti(f)).

First assume that both (f,Xti+1(f)) and the restriction (f,Xti(f)) have trivial automor-

phism group. Fix any element τ ∈ TPti(f), so that τ · (f,Xti(f)) is conformally equivalent

to (f,Xti(f)) over (F ,X ). One can check algorithmically whether a multiple aτ lies in

TPti+1(f), for each a = 1, 2, 3, . . ., via the following steps:

(1) Compute all relative moduli, down to the vertex v, for each v in the spine in the

height interval (ti+1, ti): each edge e between v and v0 is mapped by a degree

d(e) > 1 to one of the fundamental edges, and its relative modulus is 1/d(e).

(2) Compute the rotation induced by aτ at each vertex v: if aτ = (t1, . . . , tN ), then v

is rotated by

Raτ (v) =
∑
e

tj(e)

d(e)
,

where the sum is over all edges e between v and v0, and j(e) is the index of the

unique fundamental edge in the orbit of e.
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(3) If the rotation Raτ (v) is an integer multiple of 1/kv at each vertex v, then aτ ∈
TPti+1(f).

Note that this process terminates at some finite value of a: by Lemma 12.4, we know

that TPti+1 is a lattice of finite index within TPti . With trivial automorphism group, the

computation of TPti+1(f) is independent of the choice of extension (f,Xti+1(f)).

We remark that, even in the absence of global automorphisms, there can be local sym-

metries of (F ,X ) that act nontrivially on the spine of the underlying tree. A given twist

vector τ may induce one of these nontrivial automorphisms of the spine; so the computa-

tion of steps (2) and (3) above requires that we compare action on v to symmetry at a

different vertex, say v′. In that case, the local symmetries kv and kv′ will coincide, so the

computation is the same.

Suppose now that our chosen (f,Xti+1(f)) has automorphism group of order

|Aut(F ,X )(f,Xti+1(f))| = l

and the restriction (f,Xti(f)) has

|Aut(F ,X )(f,Xti(f))| = m ≥ l.

Note that l|m. Fix any element τ ∈ TPti(f). For l = m, we may proceed as above: we

check integer multiples of τ and compute the rotation induced at each of the lowest vertices

v. For l < m, we have an additional possibility. It can happen that the twisted basin

aτ · (f,Xti+1) is conformally equivalent to the basin (f,Xti+1) via an isomorphism that acts

as rotation by k/m near infinity, for some integer 1 ≤ k < m/l. Thus our algorithmic

procedure involves an extra computation. The three steps above become:

(1) Compute all relative moduli, down to the vertex v, for each v in the spine in the

height interval (ti+1, ti), as before.

(2) Compute the rotation induced by ϕk ◦ (aτ) at each vertex v, where ϕk acts as

rotation by k/m near infinity, for each k = 1, . . . ,m/l: it is given by the simple

relation Rϕk◦(aτ)(v) = Raτ (v) + (k/m).

(3) If for any k, the rotation Rϕk◦(aτ)(v) is an integer multiple of 1/kv at each vertex v,

then aτ ∈ TPti+1(f).

We illustrate with one example in degree 5 the delicacy of computing twist periods in the

presence of automorphisms; see §12.8 and Figure 12.3.

To make the above algorithmic process implementable, it is useful to compute an explicit

basis for TPti+1(f). For example, let τ1, . . . , τN be a set of basis vectors for the lattice

TPti(f). We can apply the above steps to each basis vector. Let aj is the smallest positive

integer so that ajτj ∈ TPti+1(f). We next compute the rotation effect of each vector of the

form

n1τ1 + · · ·+ nNτN

for all tuples of non-negative integers {ni} with ni ≤ ai. This is a finite process and will

produce a basis for TPti+1(f).

Once we have computed the twist periods for each class (f,Xti+1(f)) ∈ Bi+1(D), the

number Top(D, i+ 1) is computed by equation (12.3).
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Finally, we need to compute Top(D). Note that the number of conformal classes extending

a given (f,Xt0(f)) is non-decreasing with i; that is,

|Bi(D)| ≤ |Bi+1(D)|.

We claim

(1) Top(D) =∞ if and only if limi→∞ |Bi(D)| =∞; and

(2) if limi→∞ |Bi(D)| = |Bn(D)| for some n, then Top(D) = Top(D, n).

From Theorem 9.2, the number Top(D) is bounded above by the number of points in the

fiber of the bundle of gluing configurations. By the construction of the bundle (from the

proof of Theorem 9.2) the number of points in a fiber is equal to an integer multiple of

limi→∞ |Bi(D)|. Therefore, if Top(D) =∞, then it must be that limi→∞ |Bi(D)| =∞. On

the other hand, when the fiber of the bundle of gluing configurations has infinite cardinality,

Lemma 9.5 states that the fibers are Cantor sets. In particular, the fibers are uncountable.

A topological conjugacy class within the fiber contains at most countably many elements,

as the image of a lattice in RN . Therefore, there are infinitely many topological conjugacy

classes. This proves statement (1). The second statement is immediate from the arguments

and definitions above; once the number of classes |Bi(D)| has stabilized, the lattice of twist

periods TPti(f) also stabilizes. �

12.7. An example in degree 5 without symmetry. Following the steps in the proof of

Theorem 12.1, we compute the number of topological conjugacy classes associated to the

degree-5 pictograph in Figure 12.2, with two fundamental subannuli. Fix any restricted

basin (f,Xt0(f)) with the given pictograph. It is easy to see from the diagram that the

automorphism group is trivial, as are the local symmetries at the two fundamental vertices.

The lattice of twist periods TPt0 is generated by the standard basis vectors,

TPt0 = 〈e1, e2〉 ⊂ R2.

There are two vertices v1 and w1 in the height interval (t1, t0), with local degrees dv1 = 2

and dw1 = 3. Each has trivial local symmetry, so we compute that

|B1(D)| = 2 · 3 = 6,

and each class has trivial automorphism group. A full twist in fundamental subannulus A1

leaves v1 and w1 invariant, but a full twist in subannulus A2 induces a 1/2 twist at v1 and

a 1/3 twist at w1. It requires 6 twists in A2 to return to the given gluing configuration at

level 1. We compute,

TPt1 = 〈e1, 6e2〉.

The computation is independent of the conformal class in B1(D). We find that

Top(D, 1) = 6 · 1

6
= 1.

In the height interval (t2, t1), there are again two vertices, say v2 below v1 and w2 below w1.

We have local degrees dv2 = 2, dw2 = 2 and local symmetries kv2 = 2, kw2 = 1. Therefore,

|B2(D)| = |B1(D)| · 1 · 2 = 12,
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Figure 12.2. A pictograph of degree 5 determining a unique topological

conjugacy class; see §12.7.

and each class has trivial automorphism group. A full twist in fundamental subannulus A1

induces a 1/2 twist at v2, and 1/2 is an integer multiple of 1/kv2 . On the other hand, a 1/2

twist is also induced at w2 with kw2 = 1, so we find that e1 6∈ TPt2 but 2e2 ∈ TPt2 . For the

subannulus A2, the action of 6e2 induces full rotations of both v2 and w2, so 6e2 ∈ TPt2 .
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We find that

TPt2 = 〈2e1, 6e2〉

and

Top(D, 2) = 12 · 1

12
= 1.

For all vertices in the spine below v2 and w2, the local symmetry at a vertex coincides with

the local degree. Therefore

|Bi(D)| = |B2(D)| = 12

for all i ≥ 2. As explained at the end of the proof of Theorem 12.1, the number of topological

conjugacy classes also stabilizes, so we may conclude that the pictograph determines

Top(D) = Top(D, 2) = 1

topological conjugacy class of basins (f,X(f)) ∈ B5. In fact, because these polynomials

are in the shift locus, this pictograph determines a unique topological conjugacy class of

polynomials in M5.

12.8. A degree 5 example with symmetry. Consider the pictograph of Figure 12.3. It

has one fundamental edge. Fix the critical escape rate M > 0 of the highest critical points

c1 and c2, and choose heights

M > t0 > M/5 > t1 > M/25

as in the proof of Theorem 12.1.

Any choice of restricted basin (f,Xt0(f)) has Aut(F ,X )(f,Xt0(f)) of order 2, interchang-

ing the critical points labelled by 01 and 02. The extension to the full tree (F ,X ) also

interchanges the critical points labelled by 03 and 04. We have

TPt0 = Z.

Fixing (f,Xt0(f)), there are three conformal equivalence classes of extensions over (F ,X ) to

level t1. Two of these extensions, say (f1, Xt1) and (f2, Xt1), will have an automorphism of

order 2. The third (f3, Xt1) has trivial automorphism group. The restricted basins (f1, Xt1)

and (f2, Xt1) are in the same topological conjugacy class over (F ,X ), as one full twist in

the fundamental annulus interchanges them; we have

TPt1(f1) = TPt1(f2) = 2Z.

In the conformal class without automorphisms, one full twist arrives at a basin that is

conformally equivalent via an isomorphism that rotates the basin by 180 degrees, and

TPt1(f3) = Z.

These restricted basins have unique conformal extensions to basins (fi, X(fi)), i = 1, 2, 3.

This pictograph determines exactly two topological conjugacy classes of polynomials, one

with automorphisms and one without.
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Figure 12.3. A degree 5 pictograph with symmetry. See §12.8.

12.9. Multiple topological conjugacy classes in arbitrary degree > 2. Figure 12.4

shows a pictograph D in degree 4 that determines two topological conjugacy classes. This

example can easily be generalized to any degree d ≥ 3 by replacing the critical point at

the highest branching vertex v0 with one of multiplicity d − 2. It has one fundamental

subannulus.

Let v0, v−1, v−2, . . . denote the consecutive vertices in descending order. To compute the

number of topological conjugacy classes, we evaluate the twist periods at each level. First,

choose any restricted basin (f,Xt0(f)). The automorphism group Aut(F ,X )(f,Xt0(f)) is

trivial. As with every pictograph, Top(D, 0) = 1. Because of the local symmetry at v−1,

there is only one conformal equivalence class of extension to (f,Xt1(f)), so we also have
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Top(D, 1)=1. At v−2, however, the symmetry is broken by the location of the second

iterate of the lower critical point, so the two gluing choices determine distinct conformal

equivalence classes. The sum of relative moduli at v−2 is 1/2+1/2 = 1, so a full twist in the

fundamental annulus induces a full twist at v−2. Consequently, the two conformal classes

lie in two distinct topological conjugacy classes and Top(D, 2) = 2.

For each vertex below v−2, there is a local symmetry of order at least 2, so the two gluing

choices are conformally equivalent. We conclude that there are exactly two conformal

equivalence classes of basins extending the given (f,Xt0(f)), and these lie in exactly two

topological conjugacy classes. Because this is the pictograph for polynomials in the shift

locus, there are exactly two topological conjugacy classes of polynomials in Md with the

given pictograph.
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