Math 331 discussion problems

TA: Alex Karapetyan

February 21, 2023

These are extra practice problems, not to be handed in.

1. (a) Find the prime factorization of $10+91 i$ in $\mathbb{Z}[i]$.
(b) Prove that an element of $\mathbb{Z}[i]$ has even norm if and only if it is divisible by $1+i$.
2. (a) Let R be a UFD. Let $a, b \in R$ be nonzero and relatively prime. Suppose there exists $c \in R$ and $n \in \mathbb{N}$ such that $a b=c^{n}$. Prove there exist elements $x, y \in R$ and units $u, v \in R^{\times}$such that $a=u x^{n}, b=v y^{n}$.
(b) Prove, using the previous part, that the only integer solutions to $y^{2}+$ $y=x^{3}$ are $(0,0)$ and $(0,-1)$. Conclude that 0 is the only integer which is both a cube and the product of two consecutive integers.
3. For every prime $p \in \mathbb{Z}_{\geq 0}$, let

$$
\psi_{p}: \mathbb{Z}[x] \rightarrow(\mathbb{Z} / p \mathbb{Z})[x]
$$

be the ring homomorphism given by "reduction of coefficients",

$$
\psi_{p}\left(a_{n} x^{n}+\cdots+a_{0}\right)=\bar{a}_{n} x^{n}+\cdots+\bar{a}_{0}
$$

where $\bar{a} \in \mathbb{Z} / p \mathbb{Z}$ is the image of $a \in \mathbb{Z}$ under the projection map. Let $f \in$ $\mathbb{Z}[x]$ have positive degree. Prove that the gcd of the coefficients of f is 1 if and only if $\psi_{p}(f) \neq 0$ for all primes p.

