Math 331 discussion problems

TA: Alex Karapetyan

February 21, 2023

These are extra practice problems, not to be handed in.

- 1. (a) Find the prime factorization of 10 + 91i in $\mathbb{Z}[i]$.
 - (b) Prove that an element of Z[i] has even norm if and only if it is divisible by 1 + i.
- 2. (a) Let *R* be a UFD. Let $a, b \in R$ be nonzero and relatively prime. Suppose there exists $c \in R$ and $n \in \mathbb{N}$ such that $ab = c^n$. Prove there exist elements $x, y \in R$ and units $u, v \in R^{\times}$ such that $a = ux^n, b = vy^n$.
 - (b) Prove, using the previous part, that the only integer solutions to $y^2 + y = x^3$ are (0,0) and (0,-1). Conclude that 0 is the only integer which is both a cube and the product of two consecutive integers.
- 3. For every prime $p \in \mathbb{Z}_{\geq 0}$, let

$$\psi_p: \mathbb{Z}[x] \to (\mathbb{Z}/p\mathbb{Z})[x]$$

be the ring homomorphism given by "reduction of coefficients",

$$\psi_p(a_nx^n + \dots + a_0) = \overline{a}_nx^n + \dots + \overline{a}_0$$

where $\overline{a} \in \mathbb{Z}/p\mathbb{Z}$ is the image of $a \in \mathbb{Z}$ under the projection map. Let $f \in \mathbb{Z}[x]$ have positive degree. Prove that the gcd of the coefficients of f is 1 if and only if $\psi_p(f) \neq 0$ for all primes p.