Math 331 discussion problems

TA: Alex Karapetyan

January 12, 2023

These are extra practice problems, not to be handed in.

1. Let R be a ring. An element $x \in R$ is nilpotent if there exists some positive integer n such that $x^{n}=0$. Prove that if $x \in R$ is nilpotent then $1+x$ is a unit.
2. Consider

$$
f(x)=4 x^{2}+6 x+3 \in(\mathbb{Z} / 8 \mathbb{Z})[x]
$$

Is f a unit in $(\mathbb{Z} / 8 \mathbb{Z})[x]$?
3. Let R be a commutative ring and let I, J be ideals in R. Prove that

$$
\{r \in R: r J \subseteq I\}
$$

is also an ideal in R.
4. Let I be the principal ideal generated by $x^{2}+x+2$ in the $\operatorname{ring} R=(\mathbb{Z} / 5 \mathbb{Z})[x]$. Find the multiplicative inverse of $2 x+3+I$ in R / I.
5. Prove that the map

$$
\phi: \mathbb{R}[x] \rightarrow \mathbb{R}[\epsilon] /\left(\epsilon^{2}\right)
$$

given by

$$
\phi(p(x))=p(0)+p^{\prime}(0) \epsilon
$$

is a ring homomorphism.

