Math 331 discussion problems

TA: Alex Karapetyan

March 2, 2023

These are extra practice problems, not to be handed in.

- 1. For each *R* and *M*, determine whether *M* is free.
 - (a) $R = \mathbb{C}[x, y], M = (x, y).$
 - (b) $R = \mathbb{Z}, M = \mathbb{Z}[\sqrt{-5}].$
 - (c) $R = \mathbb{Z}, M = \mathbb{Q}$.
- 2. Suppose *R* is a commutative ring with $1 \neq 0$ such that every finitely generated *R*-module is free. Prove that *R* is a field.
- 3. Let *R* be a ring and let *M* be an abelian group. Prove that the structure of an *R*-module on *M* is equivalent to that of a ring homomorphism

 $R \longrightarrow \operatorname{End}(M)$

where End(M) denotes the ring of abelian group homomorphisms $M \to M$.