Homework 3

Due Wednesday, Feb. 19.

1.

- (a) Show that for any natural number n there are infinitely many primes congruent to 1 mod n. (This is a special case of a much deeper result, but don't use that. Instead, assume that p_1, \ldots, p_k are the only such primes and study $\Phi_n(np_1 \ldots p_k)$.)
- (b) Prove that for any finite abelian group G there is a Galois extension K/\mathbb{Q} with $\operatorname{Gal}(K/\mathbb{Q}) \cong G$. (With the word "abelian" removed this becomes a famous open problem, hence another opportunity for 5 bonus points.)

2. Suppose K/k is an algebraic extension such that every nonconstant polynomial in k[X] has a root in K. Prove that K is algebraically closed. (Consider first the case where K/k is separable.)

3. Suppose K and L are extensions of k that are both contained in some common field F and suppose K/k is Galois.

- (a) Prove that KL/L and $K/K \cap L$ are Galois and that $Gal(KL/L) \cong Gal(K/K \cap L)$ as topological groups.
- (b) Suppose K' is any normal extension of k and that $\phi : K \to K'$ and $\psi : L \to K'$ are k-homomorphisms such that $\phi | K \cap L = \psi | K \cap L$. Prove that there is a k-homomorphism $\sigma : KL \to K'$ such that $\sigma | K = \phi$ and $\sigma | L = \psi$.

4.

- (a) Prove that for every nonzero $n \in \mathbb{N}, \hat{\mathbb{Z}}/n\hat{\mathbb{Z}} \cong \mathbb{Z}/n\mathbb{Z}$ as topological groups.
- (b) Prove that $\hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p$ as topological groups. (Recall that \mathbb{Z}_p denotes the *p*-adic integers.)
- (c) Determine all open subgroups of $\hat{\mathbb{Z}}$.

5. Fix a separable closure \bar{k}_s of k and set $G = \text{Gal}(\bar{k}_s/k)$. Let A denote the collection of all subextensions of \bar{k}_s which are abelian over k. Let $k^{ab} = \varinjlim_{k \to k} K$.

- (a) Prove that k^{ab} is Galois over k with $\operatorname{Gal}(k^{ab}/k) \cong G/\overline{G'}$ as topological groups.
- (b) Compute $\operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q})$. You may assume the Kronecker-Weber Theorem.