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Elementary derivations of summation

and transformation formulas for q-series
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Northwestern University
Evanston, IL 60208-2730

We present some elementary derivations of summation and transformation for-
mulas for q-series, which are different from, and in several cases simpler or shorter
than, those presented in the Gasper and Rahman [1990] “Basic Hypergeometric
Series” book (which we will refer to as BHS), the Bailey [1935] and Slater [1966]
books, and in some papers; thus providing deeper insights into the theory of q-series.
Our main emphasis is on methods that can be used to derive formulas, rather than
to just verify previously derived or conjectured formulas. In §5 this approach leads
to the derivation of a new family of summation formulas for very-well-poised basic
hypergeometric series 6+2kW5+2k , k = 1, 2, . . . . Several of the observations in this
paper were presented, along with related exercises, in the author’s minicourse on
“q-Series” at the Fields Institute miniprogram on “Special Functions, q-Series and
Related Topics,” June 12 –14, 1995. As is customary, we employ the notations used
in BHS for the shifted factorial

(a)0 = 1, (a)k = a(a+ 1) · · · (a+ k − 1), k = 1, 2, . . . ,

the q-shifted factorial

(a; q)0 = 1, (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1), k = 1, 2, . . . ,

(a; q)∞ = lim
k→∞

(a; q)k =
∞∏

k=0

(1 − aqk), |q| < 1,

(a; q)α =
(a; q)∞

(aqα; q)∞
, 0 < |q| < 1,

the rFs hypergeometric series

rFs(a1, a2, . . . , ar; b1, . . . , bs; z) ≡ rFs

[
a1, a2, . . . , ar

b1, . . . , bs
; z

]
=

∞∑
k=0

(a1)k(a2)k · · · (ar)k

k!(b1)k · · · (bs)k
zk,
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and the rφs basic hypergeometric series

rφs(a1, a2, . . . , ar; b1, . . . , bs; q, z) ≡ rφs

[
a1, a2, . . . , ar

b1, . . . , bs
; q, z

]
=

∞∑
k=0

(a1, a2, . . . , ar; q)k

(q, b1, . . . , bs; q)k

[
(−1)kq(

k
2)

]1+s−r

zk,

where
(
k
2

)
= k(k − 1)/2, (a1, a2, . . . , ar; q)k = (a1; q)k(a2; q)k · · · (ar; q)k and the

principal value of qα is taken. We also employ the compact notation

r+1Wr (a1; a4, a5, . . . , ar+1; q, z)

for the very-well-poised r+1φr series

r+1φr

[
a1, qa

1
2
1 ,−qa

1
2
1 , a4, . . . , ar+1

a
1
2
1 ,−a

1
2
1 , qa1/a4, . . . , qa1/ar+1

; q, z

]
and define the bilateral basic hypergeometric rψs series by

rψs(z) ≡ rψs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=

∞∑
k=−∞

(a1, a2, . . . , ar; q)k

(b1, b2, . . . , bs; q)k
(−1)(s−r)kq(s−r)(k

2) zk.

For simplicity, unless stated otherwise we shall assume that n is a nonnegative
integer, |q| < 1 in nonterminating q-series, and that the parameters and variables
are complex numbers such that the series converge absolutely and any singulari-
ties are avoided (which usually leads to isolated conditions on the parameters and
variables since the singularities are usually at poles and at limits of sequences of
poles). For a discussion of when the above series converge, see Sections 1.2 and 5.1
in BHS (in the third paragraph on p. 5 each of the ratios |b1b2 · · · bs|/|a1a2 · · · ar|
should be replaced by |b1b2 · · · bsq|/|a1a2 · · · ar| ).

1. The q-binomial theorem

The summation formula

1F0(a; —; z) =
∞∑

k=0

(a)k

k!
zk = (1 − z)−a, |z| < 1, (1.1)

is called the binomial theorem because, when −a = n is a nonnegative integer and
z = −x/y, it reduces to the binomial theorem for the n-th power of the binomial
x+ y:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k . (1.2)

Since, by l’Hôpital’s rule,

lim
q→1

1 − qa

1 − q
= a

and hence

lim
q→1

(qa; q)k

(q; q)k
=

(a)k

k!
,
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it is natural to consider what happens when the coefficient (a)k/k! of zk in the
series in (1.1) is replaced by (qa; q)k/(q; q)k or, more generally, by (a; q)k/(q; q)k.
Hence, let us set

f(a, z) =
∞∑

k=0

(a; q)k

(q; q)k
zk, |z| < 1, (1.3)

with |q| < 1. The case when |q| > 1 will be considered later. Note that, by the
Weierstrass M-test, since |q| < 1 the series in (1.3) converges uniformly on compact
subsets of the unit disk {z : |z| < 1} to a function f(a, z) that is an analytic
function of z (and of a) when |z| < 1. One way to find a formula for f(a, z) that is
a generalization of (1.1) is to first observe that, since 1 − a = 1 − aqk + aqk − a =
(1 − aqk) − a(1 − qk),

f(a, z) = 1 +
∞∑

k=1

(a; q)k

(q; q)k
zk

= 1 +
∞∑

k=1

(aq; q)k−1

(q; q)k
[(1 − aqk) − a(1 − qk)]zk

= 1 +
∞∑

k=1

(aq; q)k

(q; q)k
zk − a

∞∑
k=1

(aq; q)k−1

(q; q)k−1
zk

= f(aq, z) − azf(aq, z) = (1 − az)f(aq, z). (1.4)

By iterating this functional equation n− 1 times, we find that

f(a, z) = (az; q)n f(aqn, z),

which on letting n → ∞ and using qn → 0 yields

f(a, z) = (az; q)∞ f(0, z). (1.5)

Now set a = q in (1.5) to get

f(0, z) =
f(q, z)

(qz; q)∞
=

(1 − z)−1

(qz; q)∞
=

1
(z; q)∞

,

which, combined with (1.3) and (1.5), gives the q-binomial theorem

1φ0(a; —; q, z) =
∞∑

k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

, |z| < 1, |q| < 1. (1.6)

This summation formula was derived by Cauchy [1843], Jacobi [1846], and
Heine [1847]. Heine’s proof of (1.6), which is reproduced in the books Heine [1878],
Bailey [1935, p. 66], Slater [1966, p. 92], and in §1.3 of BHS along with some mo-
tivation from Askey [1980], consists of using series manipulations to derive the
functional equation

(1 − z)f(a, z) = (1 − az)f(a, qz), (1.7)
iterating (1.7) n− 1 times, and then letting n → ∞ to get

f(a, z) =
(az; q)n

(z; q)n
f(a, qnz) =

(az; q)∞
(z; q)∞

f(a, 0) =
(az; q)∞
(z; q)∞

,

which gives (1.6).
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Another derivation of the q-binomial theorem can be given by calculating the
coefficients ck = g

(k)
a (0)/k!, k = 0, 1, 2, . . . , in the Taylor series expansion of the

function

ga(z) =
(az; q)∞
(z; q)∞

=
∞∑

k=0

ckz
k, (1.8)

which is an analytic function of z when |z| < 1 and |q| < 1. Clearly c0 = ga(0) = 1.
One may show that c1 = g′

a(0) = (1−a)/(1−q) by taking the logarithmic derivative
of (az; q)∞/(z; q)∞ and then setting z = 0. But, unfortunately, the succeeding
higher order derivatives of ga(z) become more and more difficult to calculate for
|z| < 1, and so one is forced to abandon this approach and to search for another
way to calculate all of the ck coefficients. One simple method is to notice that
from the definition of ga(z) as the quotient of two infinite products, it immediately
follows that ga(z) satisfies the functional equation

(1 − z) ga(z) = (1 − az) ga(qz), (1.9)

which is of course the same as the functional equation (1.7) satisfied by f(a, z).
In a verification type proof of the q-binomial theorem, (1.9) provides substantial
motivation for showing, as in Heine’s proof, that the sum of the q-binomial series
f(a, z) satisfies the functional equation (1.7).

To calculate the ck coefficients, we first use (1.9) to obtain
∞∑

k=0

ck z
k −

∞∑
k=0

ck z
k+1 =

∞∑
k=0

ck q
k zk − a

∞∑
k=0

ck q
k zk+1,

or, equivalently,

1 +
∞∑

k=1

(ck − ck−1) zk = 1 +
∞∑

k=1

(ckqk − ack−1 q
k−1) zk,

which implies that
ck − ck−1 = ckq

k − ack−1 q
k−1

and hence

ck =
1 − aqk−1

1 − qk
ck−1, k = 1, 2, . . . . (1.10)

Iterating the recurrence relation (1.10) gives

ck =
(a; q)k

(q; q)k
c0 =

(a; q)k

(q; q)k
, k = 0, 1, 2, . . . ,

and concludes the derivation of (1.6). For a combinatorial proof of the q-binomial
theorem using a bijection between two classes of partitions, see Andrews [1969].

It is of interest to note that if |q| > 1, then by replacing q in (1.6) by q−1,
applying the inversion identity

(a; q)k = (a−1; q−1)k(−a)kq(
k
2), k = 0, 1, 2, . . . , (1.11)

replacing a by a−1 and then z by az/q, it follows that when |q| > 1 the q-binomial
theorem takes the form

1φ0(a; —; q, z) =
(z/q; q−1)∞
(az/q; q−1)∞

, |az/q| < 1, |q| > 1. (1.12)
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In the special case when z = −x/y and a = q−n, n = 0, 1, 2, . . . , both (1.6)
and (1.12) give that (1.2) has a q-analogue of the form

yn(−xq−n/y; q)n =
n∑

k=0

(q−n; q)k

(q; q)k
(−1)kxkyn−k. (1.13)

Another q-analogue of (1.2), which we will utilize in the next section, may be
easily derived by first observing that from (1.6) we have the product formula

∞∑
j=0

(a; q)j

(q; q)j
zj

∞∑
k=0

(b; q)k

(q; q)k
(az)k =

∞∑
n=0

(ab; q)n

(q; q)n
zn, |z| < 1, (1.14)

which is a q-analogue of (1 − z)−a(1 − z)−b = (1 − z)−a−b. Then set j = n − k in
the product on the left side of (1.14) and compare the coefficients of zn on both
sides of the equation to get

(ab; q)n

(q; q)n
=

n∑
k=0

(a; q)n−k(b; q)k

(q; q)n−k(q; q)k
ak, (1.15)

which gives a q-analogue of (1.2) in the form

(ab; q)n =
n∑

k=0

[n
k

]
q
(a; q)n−k(b; q)k a

k, (1.16)

where the q-binomial coefficient is defined by[n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
, k = 0, 1, . . . , n.

Replacing a in (1.16) by q1−n/c and manipulating the q-shifted factorials via the
identities (I.8), (I.14), and (I.42) in Appendix I of BHS shows that (1.16) is equiv-
alent to the q-Chu–Vandermonde summation formula

2φ1(q−n, b; c; q, q) =
(c/b; q)n

(c; q)n
bn, (1.17)

which is a q-analogue of the Chu–Vandermonde summation formula (see p. 2 in
BHS)

F (−n, b; c; 1) =
(c− b)n

(c)n
.

By either switching the order of summation or inverting the base q via (1.11), we
find that (1.17) is also equivalent to the summation formula

2φ1(q−n, b; c; q, cqn/b) =
(c/b; q)n

(c; q)n
. (1.18)

2. Analytic continuations

By manipulating the products on the right side of (1.18) we find that

2φ1(z−1, b; c; q, cz/b) =
(c/b, cz; q)∞
(c, cz/b; q)∞

=
∞∏

k=0

(1 − cqk/b)(1 − czqk)
(1 − cqk)(1 − czqk/b)

(2.1)
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with z = qn, n = 0, 1, . . . , and |q| < 1. The infinite product on the right side of
(2.1) converges uniformly on compact subsets of the disk {z : |cz/b| < 1} to an
analytic function of z. In view of the identity

(z−1; q)kz
k = (z − 1)(z − q) · · · (z − qk−1), k = 0, 1, . . . ,

the series on the left side of (2.1) is a sum of analytic functions of z, which also
converges uniformly on compact subsets of the disk {z : |cz/b| < 1} to an analytic
function of z. Since qn → 0 as n → ∞ when |q| < 1, it follows by analytic
continuation that (2.1) holds for arbitrary complex values of z when |cz/b| < 1 and
|q| < 1. Hence, by setting z = a−1 we have derived the Jacobi [1846] and Heine
[1847] q-Gauss summation formula

2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

, |c/ab| < 1. (2.2)

Similarly, from (1.17)

2φ1(a, b; c; q, q) =
(a/c, b/c; q−1)∞
(1/c, ab/c; q−1)∞

, |q| > 1, (2.3)

with a = q−n, n = 0, 1, . . . , and, because q−n → 0 as n → ∞ when |q| > 1, it
follows by analytic continuation that (2.3) holds for arbitrary complex values of a
when, for convergence, |ab/c| < 1. Formula (2.3) also follows from (2.2) by inverting
the base q.

To see that both (2.2) and (2.3) are q-analogues of Gauss’ [1813] famous sum-
mation formula

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0, (2.4)

it suffices to replace a, b, c by qa, qb, qc, respectively, with 0 < q < 1 in (2.2) and
q > 1 in (2.3), and then let q → 1. The q-Gauss formula (2.2) was derived in BHS by
using the q-binomial theorem to derive Heine’s [1847] 2φ1 transformation formula

2φ1(a, b; c; q, z) =
(b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b), |z| < 1, |b| < 1, (2.5)

setting z = c/ab to reduce the series on the right side of this transformation formula
to a 1φ0 series, and then summing that series via the q-binomial theorem.

If we shift the index of summation k in (1.6) by replacing it by k+n, we obtain
that if 0 < |q| < 1, 0 < |z| < 1, and n = 0, 1, 2, . . . , then

(az; q)∞
(z; q)∞

=
∞∑

k=−∞

(a; q)k

(q; q)k
zk =

∞∑
k=−∞

(a; q)k+n

(q; q)k+n
zk+n

=
∞∑

k=−∞

(a; q)n(aqn; q)k

(q; q)n(qn+1; q)k
zk+n =

(a; q)n

(q; q)n
zn

∞∑
k=−∞

(aqn; q)k

(qn+1; q)k
zk, (2.6)

where, as usual, the definition of (a; q)k is extended to negative integer values of k
by defining

(a; q)−k =
1

(aq−k; q)k
=

(−q/a)k

(q/a; q)k
q(

k
2), k = 0, 1, 2, . . . .
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After replacing a by aq−n and then setting qn+1 = b, the left and right sides of
(2.6) give

1ψ1(a; b; q, z) =
∞∑

k=−∞

(a; q)k

(b; q)k
zk =

(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

(2.7)

for b = qn+1 when 0 < |q| < 1, 0 < |z| < 1, and n = 0, 1, 2, . . . . Since qn+1 → 0
as n → ∞ when |q| < 1, and the infinite series and the infinite product on the
left and right sides, respectively, of (2.7) converge to analytic functions of b when
|b| < min(1, |az|) and |z| < 1, it follows by analytic continuation that we have
derived Ramanujan’s 1ψ1 summation formula

1ψ1(a; b; q, z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < 1, (2.8)

which reduces to the q-binomial theorem when b = q.
The above derivation of (2.8) is essentially in the reverse order of Ismail’s [1977]

proof of (2.8), which first reduces the proof of (2.8) to the case when b = qn+1, where
n is a nonnegative integer, and then verifies this case by using a shift in the index
of summation to obtain a series that is summable by the q-binomial theorem. For
other proofs of (2.8) and historical comments, see Berndt [1993], BHS, and their
references. It should be noted that if we set b = 0 in (2.8), replace q and z by
q2 and −qz/a, respectively, and then let a → ∞, we obtain Jacobi’s [1829] triple
product identity

∞∑
k=−∞

qk2
zk =

(
q2,−qz,−q/z; q2)∞ . (2.9)

The infinite product representations for the theta functions ϑ1(x), ϑ2(x), ϑ3(x), and
ϑ4(x) displayed on p. 13 of BHS are special cases of (2.9).

It is natural to investigate what happens when the shift in index of summation
method is applied to the q-Gauss summation formula (2.2). Proceeding as in (2.6)
with the parameters a, b, c in (2.2) replaced by aq−n, bq−n, cq−n, respectively, we
find that if |q| < 1 and d = qn+1, n = 0, 1, 2, . . . , then

2ψ2(a, b; c, d; q, cd/abq) =
d(q, c/a, c/b, d/a, d/b; q)∞

qcn(q/a, q/b, c, d, cd/abq; q)∞
, (2.10)

when 0 < |cd/abq| < 1 and c 6= qn−k, k = 0, 1, 2, . . . . Unfortunately, the right side
of (2.10) is not an analytic function of d in a neighborhood of the origin because
of the cn factor and the initial d = qn+1 condition, and the term with index k in
the series on the left side of (2.10) has a pole of order −k at d = 0 when k is a
negative integer. Therefore we cannot analytically continue (2.10) in d to derive an
infinite product representation for the series on the left side of (2.10) that is valid
for d in a neighborhood of the origin. This helps to explain why no one has been
able to extend the q-Gauss summation formula (2.2) to derive an infinite product
representation for a 2ψ2 series that is a q-analogue of Dougall’s [1907] bilateral
hypergeometric series summation formula

∞∑
k=−∞

(a)k(b)k

(c)k(d)k
=

Γ(c)Γ(d)Γ(1 − a)Γ(1 − b)Γ(c+ d− a− b− 1)
Γ(c− a)Γ(c− b)Γ(d− a)Γ(d− b)

, (2.11)
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where Re (c + d − a − b − 1) > 0 and (a)k = (−1)k/(1 − a)−k, k = −1,−2, . . . ,
which reduces to Gauss’ formula (2.4) when d = 1. However, see Ex. 5.20 in BHS
for two transformation formulas for 2ψ2(a, b; c, d; q, z) series.

3. The q-Pfaff–Saalschütz summation formula

In order to extend the q-Chu–Vandermonde and q-Gauss summation formulas
to 3φ2 series, we use (1.17) in the form

(a; q)k

(c; q)k
=

(a; q)n

(c; q)n
2φ1(qk−n, c/a; q1−n/a; q, q), 0 ≤ k ≤ n,

to obtain
n∑

k=0

(q−n, a, b; q)k

(q, c, d; q)k
qk =

(a; q)n

(c; q)n

n∑
k=0

(q−n, b; q)k

(q, d; q)k
qk

n−k∑
j=0

(qk−n, c/a; q)j

(q, q1−n/a; q)j
qj

=
(a; q)n

(c; q)n

n∑
j=0

(q−n, c/a; q)j

(q, q1−n/a; q)j
2φ1(qj−n, b; d; q, q)

by a change in order of summation, which on using (1.17) to sum the 2φ1 series
gives the 3φ2 transformation formula

3φ2(q−n, a, b; c, d; q, q)

=
(a, d/b; q)n

(c, d; q)n
bn 3φ2(q−n, c/a, q1−n/d; q1−n/a, q1−nb/d; q, q). (3.1)

This formula is a generalization of Heine’s 2φ1 transformation formula (2.5), which
follows from (3.1) by setting d = q1−n/z, letting n → ∞, and then switching a and
b. Now notice that if c/a = q1−nb/d, i.e. if the balanced condition cd = abq1−n

holds, then the 3φ2 series on the right side of (3.1) reduces to a terminating 2φ1
series that can be summed by (1.17) to give Jackson’s [1910] summation formula
for a terminating balanced 3φ2 series

3φ2(a, b, q−n; c, abc−1q1−n; q, q) =
(c/a, c/b; q)n

(c, c/ab; q)n
. (3.2)

This formula is usually called the q-Saalschütz or the q-Pfaff–Saalschütz summa-
tion formula because it is a q-analogue of the Pfaff [1797] and Saalschütz [1890]
summation formula

3F2(a, b,−n; c, 1 + a+ b− c− n; 1) =
(c− a)n(c− b)n

(c)n(c− a− b)n
.

Notice that letting a → 0 in (3.2) gives (1.17), letting a → ∞ gives (1.18), and
letting n → ∞ in (3.2) gives the q-Gauss summation formula (2.2).

If, as in our derivation of the q-Gauss formula (2.2), we observe that (3.2) can
be rewritten in the form

3φ2(a, b, 1/z; c, abq/cz; q, q) =
(c/a, c/b, cz, cz/ab; q)∞
(c, c/ab, cz/a, cz/b; q)∞

, |q| < 1, (3.3)

with z = qn, n = 0, 1, . . . , then the infinite product on the right side of (3.3) clearly
converges to an analytic function of z when |z| < min(|a/c|, |b/c|). However, because
(1/z; q)k/(abq/cz; q)k, k = 1, 2, . . . , has poles at the points z = abqj/c, 1 ≤ j ≤ k,
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there is no neighborhood of the origin in which all of the terms of the series on
the left side of (3.3) are analytic; thus (3.3) cannot be analytically continued in z
to a neighborhood of the origin. Nevertheless, see equation (2.10.12) in BHS for
a nonterminating extension of (3.2) with the sum of two balanced 3φ2 series, and
also the bilateral nonterminating extension in Ex. 5.13 of BHS.

The q-Pfaff–Saalschütz formula (3.2) was derived in Bailey [1935] and in Slater
[1966] by first using an induction argument to give Jackson’s [1921] verification type
proof of his summation formula for a terminating 8W7 series (derived in §5)

8W7(a; b, c, d, e, q−n; q, q) =
(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n
, (3.4)

where bcde = a2qn+1, and then replacing d by aq/d in (3.4) and letting a → ∞ to
get (3.2) as a limit case of (3.4). In BHS, (3.2) was derived by iterating (2.5) twice
to derive another of Heine’s [1847] transformation formulas

2φ1(a, b; c; q, z) =
(abz/c; q)∞

(z; q)∞
2φ1(c/a, c/b; c; q, abz/c), (3.5)

where |z| < 1 and |abz/c| < 1, using the q-binomial theorem to expand the coeffi-
cient of the 2φ1 series on the right side of (3.5) as a power series in powers of z, and
then equating the coefficients of zn on both sides of the resulting formula to get
(3.2). Recently, Ismail [1995] used the Askey-Wilson difference operators to derive
(3.2). For some combinatorial proofs of (3.2), see Andrews and Bressoud [1984],
Goulden [1985], and Zeilberger [1987]. Also see Wilf and Zeilberger [1992] for a
computer-constructible WZ proof of (3.2).

4. Summation formulas for some very-well-poised series

Let us start by deriving some transformation formulas for 4W3(a; b; q, z) series.
Let |q| < 1. Since

(1 − a)(1 − b)
(qa

1
2 ,−qa 1

2 ; q)k

(a
1
2 ,−a 1

2 ; q)k

= (1 − b)(1 − aq2k) = 1 + abq2k − (b+ aq2k)

= (1 + abq2k − aqk − bqk) − (b+ aq2k − aqk − bqk)

= (1 − aqk)(1 − bqk) − b(1 − aqk/b)(1 − qk),

we have

4W3(a; b; q, z) = 1 +
∞∑

k=1

(aq, bq; q)k−1

(q, aq/b; q)k
(1 − b)(1 − aq2k)zk

= 1 +
∞∑

k=1

(aq, bq; q)k

(q, aq/b; q)k
zk − bz

∞∑
k=1

(aq, bq; q)k−1

(q, aq/b; q)k−1
zk−1

= (1 − bz) 2φ1(aq, bq; aq/b; q, z), |z| < 1. (4.1)

Hence 4W3(a; b; q, b−1) = 0 when |b−1| < 1, and it follows from the special cases
b = q−n, n = 1, 2, . . . , and the fact that 4W3(a; 1; q, z) = 0 that

4W3(a; q−n; q, qn) = δn,0 , (4.2)

where δn,m is the Kronecker delta function. Some recent multidimensional gener-
alizations of (4.2) are given in Bhatnagar and Milne [1995].
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This derivation of (4.2) is substantially simpler than that in §2.3 of BHS, which
used the q-Pfaff–Saalschütz formula (3.2) and the Bailey [1941] and Daum [1942]
q-Kummer summation formula

2φ1(a, b; aq/b; q,−q/b) =
(−q; q)∞(aq, aq2/b2; q2)∞

(aq/b,−q/b; q)∞
, |q/b| < 1, (4.3)

derived in §1.8 of BHS. Formula (4.2) can also be derived by the finite difference
method employed in Gasper [1989] and Gasper and Rahman [1990a] to derive biba-
sic extensions of (4.2), and by the method pointed out in Rahman [1990].

Using (4.2), we obtain the expansion formula

u0 =
∑
k≥0

uk δk,0 =
∑
k≥0

uk

k∑
j=0

(a, qa
1
2 ,−qa 1

2 , q−k; q)j

(q, a
1
2 ,−a 1

2 , aqk+1; q)j

qjk

=
∑
j≥0

(a, qa
1
2 ,−qa 1

2 ; q)j

(a
1
2 ,−a 1

2 , aqj+1; q)j

(−1)jq(
j
2)

∑
k≥0

(qj+1, aqj+1; q)k

(q, aq2j+1; q)k
uj+k (4.4)

by a change in order of summation, where {uk} is a sequence of complex numbers
such that the change in order of summation is justified, which is the case when {uk}
terminates and when the double series converge absolutely. If {uk} is such that the
sum over k on the right side of (4.4) can be evaluated in terms of q-shifted factorials,
then (4.4) yields a summation formula for a q-series. In particular, setting

uk =
(b, c, q−n; q)k

(q, aq, bcq−n/a; q)k
qk

in (4.4), the sum over k on the right side of (4.4) becomes a multiple of a termi-
nating balanced 3φ2 series that can be summed by means of the q-Pfaff–Saalschütz
summation formula (3.2), thus giving the sum of a terminating 6W5 series

6W5(a; b, c, q−n; q, aqn+1/bc) =
(aq, aq/bc; q)n

(aq/b, aq/c; q)n
, (4.5)

which reduces to (4.2) when c = aq/b. This formula was derived in BHS by first
using (3.2) to derive the expansion formula (2.2.4) in BHS, and then applying (4.2)
to a special case of the expansion formula. As in our derivation of (2.2) from (1.18),
analytic continuation of (4.5) gives its nonterminating extension

6W5(a; b, c, d; q, aq/bcd) =
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, |aq/bcd| < 1. (4.6)

This formula was obtained in §2.8 of BHS as a limit case of the summation formula
(5.6) derived in §5.

In order to extend (4.6) to a summation formula for a 6ψ6 series, it suffices
to proceed as in the derivation of (2.8) from (2.2). Explicitly, replace the in-
dex of summation, call it k, in (4.6) by k + n, replace the parameters a, b, c, d
by aq−2n, bq−n, cq−n, dq−n, respectively, and manipulate the infinite products to
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obtain that

6ψ6

[
a/z, qa

1
2 ,−qa 1

2 , b, c, d

zq, a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d
; q,

azq

bcd

]

=
(aq, aq/bc, aq/bd, aq/cd, zq/b, zq/c, zq/d, q, q/a; q)∞
(aq/b, aq/c, aq/d, q/b, q/c, q/d, zq, zq/a, azq/bcd; q)∞

(4.7)

with z = qn, n = 0, 1, 2, . . . , where 0 < |azq/bcd| < 1. Since the infinite series and
the infinite product on the left and right sides, respectively, of (4.7) converge to an-
alytic functions of z when |z| < min(|1/q|, |a/q|, |bcd/aq|), by analytic continuation
(4.7) holds when |z| < min(|1/q|, |a/q|, |bcd/aq|). Thus, setting z = a/e, we have
derived Bailey’s [1936] summation formula for a very-well-poised 6ψ6 series

6ψ6

[
qa

1
2 ,−qa 1

2 , b, c, d, e

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e
; q,

a2q

bcde

]
=

(aq, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, a2q/bcde; q)∞

, (4.8)

where 0 < |a2q/bcde| < 1. Also see the proofs referred to in §5.3 of BHS and, in
particular, the extension of Ismail’s [1977] proof of (2.8) to a proof of (4.8) presented
in Askey and Ismail [1979].

Notice that, when d = a
1
2 and e = −a 1

2 , (4.8) reduces to the following summa-
tion formula for a 2ψ2 series that is different from the series considered in (2.10)

2ψ2(b, c; aq/b, aq/c; q,−aq/bc)
=

(aq/bc; q)∞(aq2/b2, aq2/c2, q2, aq, q/a; q2)∞
(aq/b, aq/c, q/b, q/c,−aq/bc; q)∞

, 0 < |aq/bc| < 1. (4.9)

5. Additional summation and transformation formulas

In view of the important formulas that were derived in §4 from the expansion
formula (4.4), which followed from the summation formula (4.2), it is of interest
to investigate what formulas can be derived by replacing (4.2) by the more general
summation formula (4.8). To introduce an integer parameter k, let us start by
replacing a, b, c, d, e in (4.8) by aq2k, bqk, cqk, dqk, eq2k, respectively, to rewrite (4.8)
in the form

6ψ6

[
qk+1a

1
2 ,−qk+1a

1
2 , bqk, cqk, dqk, eq2k

qka
1
2 ,−qka

1
2 , aqk+1/b, aqk+1/c, aqk+1/d, aq/e

; q,
a2q1−k

bcde

]
= A

(aq/b, aq/c, aq/d, be/a, ce/a, de/a; q)k(a; q)2k

(b, c, d, bcde/a2; q)k(aq, e; q)2k

(
−bcd

a

)k

q(
k
2) (5.1)

with

A =
(aq, aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de, q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, a2q/bcde; q)∞

. (5.2)
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Using (5.1) with A written as a (constant) function of k and with j as the index of
summation in the 6ψ6 series, we find that

A
∞∑

k=−∞
uk =

∞∑
k=−∞

Auk =
∞∑

j=−∞

(qa
1
2 ,−qa 1

2 , b, c, d, e; q)j

(a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e; q)j

(
a2q

bcde

)j

×
∞∑

k=−∞

(bcde/a2, eqj , eq−j/a; q)k

(be/a, ce/a, de/a; q)k
uk (5.3)

after replacing j by j−k and changing the order of summation, where it is assumed
that {uk}∞

k=−∞ is a bilateral sequence of complex numbers such that the double
series on the right side of (5.3) converges absolutely.

If we let e = a in (5.3), which is equivalent to starting with the 6φ5 special case
of (5.1), and set

uk =
(b, c, d, aq/ef ; q)k

(q, aq/e, aq/f, bcd/a; q)k
qk, (5.4)

where at least one of numerator parameters b, c, d, aq/ef is of the form q−n, n =
0, 1, 2 . . . , so that the sequence {uk} has compact support, then the sum over k on
the right side of (5.3) becomes a terminating balance 3φ2 series that is summable
via (3.2). This gives the transformation formula

8W7(a; b, c, d, e, f ; q, a2q2/bcdef)

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

4φ3

[
b, c, d, aq/ef

aq/e, aq/f, bcd/a
; q, q

]
(5.5)

provided that the 4φ3 series on the right side terminates and |a2q2/bcdef | < 1, so
that the series on the left side converges. Watson [1929] used induction to prove
(5.5) when both of the series terminate; and he commented that it should extend to
the case when the series on the left converges and the series on the right terminates,
which was subsequently proved by Bailey (see p. 70 in Bailey [1935]). Fifty years
after Watson’s paper was published, Askey and Ismail [1979] showed that (5.5)
follows from Watson’s terminating case by analytic continuation in the variable
z = 1/f. Formula (5.5) can also be derived by observing that the proof of the
expansion formula (2.5.2) in BHS extends to the case when q−n is replaced by a
complex variable f and aq/bc is a negative integer power of q, so that using (4.6)
to sum the resulting nonterminating very-well-poised 6φ5 series on the right side of
the expansion formula yields (5.5). For a proof via orthogonal polynomials of (5.5)
when both series terminate, see Andrews and Askey [1977].

When b = q−n and a2q = bcdef the 4φ3 series in (5.5) reduces to a terminating
balanced 3φ2 series that can be summed by (3.2) to derive, after replacing f by b,
Jackson’s [1921] summation formula for a terminating 8W7 series

8W7(a; b, c, d, e, q−n; q, q) =
(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n
, (5.6)

where a2qn+1 = bcde. Letting n → ∞ in (5.6) gives (4.6). Note that the restrictions
that the series in (5.6) and the series on the right side of (5.5) terminate cannot be
removed by analytic continuation in a neighborhood of the origin of the z-plane by
starting with the z = qn, n = 0, 1, 2, . . . , cases because there is no neighborhood of
the origin in which all of the terms of the series are analytic. The 4φ3 series in (5.5)
also reduces to a terminating balanced 3φ2 series that is summable by (3.2) when
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f = aqn+1/e and c = a/b, which leads to a summation formula for a nonterminating
8W7 series

8W7(a; b, a/b, d, e, aqn+1/e; q, q1−n/d)

=
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

(aq/be, bq/e; q)n

(aq/e, q/e; q)n
, |q1−n/d| < 1, (5.7)

where n = 0, 1, 2, . . . .
In order to use (5.7) to derive some new summation formulas, we first in-

troduce a nonnegative integer parameter k by replacing a, b, c, d, e in (5.7) by
aq2k, bqk, cqk, dqk, eqk, respectively, to get

8W7(aq2k; bqk, aqk/b, dqk, eqk, aqk+n+1/e; q, q1−k−n/d)

= Bn
(bq, aq/b, aq/d, aq/e, eq−n; q)k

(aq; q)2k(d, e, aqn+1/e; q)k
(−d)kq(

k
2)+kn (5.8)

with

Bn =
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

(aq/be, bq/e; q)n

(aq/e, q/e; q)n
. (5.9)

Then, proceeding as in the derivation of (5.3) with (5.1) replaced by (5.8), we obtain
the expansion formula

Bn

∞∑
k=0

uk =
∞∑

j=0

(a, qa
1
2 ,−qa 1

2 , b, a/b, d, e, aqn+1/e; q)j

(q, a
1
2 ,−a 1

2 , aq/b, bq, aq/d, aq/e, eq−n; q)j

(
q1−n

d

)j

×
j∑

k=0

(aqj , q−j ; q)k

(b, a/b; q)k
uk, (5.10)

where {uk}∞
k=0 is a sequence of complex numbers such that the double series on the

right side of (5.10) converges absolutely.
If we let

uk =
(b, a/b, q−m; q)k

(q, aq/f, fq−m; q)k
qk (5.11)

in (5.10), where m is a nonnegative integer, then the sums over k on both the right
and left sides of (5.10) are summable via (3.2), yielding the summation formula

10W9(a; b, a/b, d, e, aqn+1/e, f, aqm+1/f ; q, q1−n−m/d)

=
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

(aq/be, bq/e; q)n

(aq/e, q/e; q)n

(aq/bf, bq/f ; q)m

(aq/f, q/f ; q)m
, (5.12)

where n,m = 0, 1, 2, . . . , and |q1−n−m/d| < 1. Moreover, by iterating this proce-
dure, it follows that (5.7) extends to the family of summation formulas

6+2kW5+2k(a; b, a/b, d, e1, . . . , ek, aq
n1+1/e1, . . . , aq

nk+1/ek; q, q1−(n1+···+nk)/d)

=
(q, aq, aq/bd, bq/d; q)∞
(bq, aq/b, aq/d, q/d; q)∞

k∏
j=1

(aq/bej , bq/ej ; q)nj

(aq/ej , q/ej ; q)nj

, k = 1, 2, . . . , (5.13)

where n1, . . . , nk are nonnegative integers and |q1−(n1+···+nk)/d| < 1.
For applications of (5.6) and additional summation, transformation, and ex-

pansion formulas, see BHS. The latest list of errata for BHS is available over the
World Wide Web at: http://www.math.nwu.edu/preprints/gasper/index.html
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Saalschütz, L. [1890] Eine Summationsformel, Zeitschr. Math. Phys., 35, 186–
188.

Slater, L.J. [1966] Generalized Hypergeometric Functions, Cambridge Univer-
sity Press, Cambridge.

Watson, G.N. [1929] A new proof of the Rogers-Ramanujan identities, J. Lon-
don Math. Soc., 4, 4–9.



16 George Gasper

Wilf, H.S and Zeilberger, D. [1992] An algorithmic proof theory for hypergeo-
metric (ordinary and “q”) multisum/integral identities, 108, 575–633.

Zeilberger, D. [1987] A q-Foata proof of the q-Saalschütz identity, Europ. J.
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