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q-Extensions of Erdélyi’s Fractional Integral
Representations for Hypergeometric Functions

and Some Summation Formulas for Double
q-Kampé de Fériet Series

George Gasper

Dedicated to Dick Askey on the occasion of his 66th birthday,
and to the memory of D.B. Sears whose 4φ3 transformation

formula plays a crucial role in this paper

Abstract. q-Analogues of Erdélyi’s fractional integral representations of hy-
pergeometric functions are derived and extended to expansion formulas for
certain 3φ2 and 4φ3 basic hypergeometric series. Special cases of some of the
derived formulas are used to derive new summation formulas for double hy-
pergeometric and basic hypergeometric Kampé de Fériet series, including a
summation formula for a double basic hypergeometric Kampé de Fériet series
that was conjectured in work of J. Van der Jeugt, S.N. Pitre, and K. Srini-
vasa Rao on the evaluation of the 9-j recoupling coefficients appearing in the
quantum theory of angular momentum.

1. Introduction

Let z 6= 0 and | arg(1− z)| < π. In 1939, Erdélyi [4] used fractional integration
by parts and transformation formulas for 2F1 hypergeometric functions to show
that Euler’s integral

2F1(α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−α dt,(1.1)

where Re γ > Re β > 0, and Bateman’s [3] extension of (1.1)

2F1(α, β; γ; z) =
Γ(γ)

Γ(λ)Γ(γ − λ)

∫ 1

0

tλ−1(1 − t)γ−λ−1
2F1(α, β; λ; tz) dt,(1.2)
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2 GEORGE GASPER

where Re γ > Re λ > 0, have extensions of the forms [4, equations (17), (11), and
(20), respectively]

2F1(α, β; γ; z) =
Γ(γ)

Γ(µ)Γ(γ − µ)

∫ 1

0

tµ−1(1− t)γ−µ−1(1− tz)λ−α−β(1.3)

· 2F1(λ− α, λ− β; µ; tz) 2F1(α + β − λ, λ− µ; γ − µ;
(1− t)z
1− tz

) dt,

where Re γ > Re µ > 0,

2F1(α, β; γ; z) =
Γ(γ)

Γ(λ)Γ(γ − λ)

∫ 1

0

tλ−1(1− t)γ−λ−1(1 − tz)−α′(1.4)

· 2F1(α− α′, β; λ; tz) 2F1(α′, β − λ; γ − λ;
(1− t)z
1− tz

) dt,

where Re γ > Re λ > 0, and

2F1(α, β; γ; z) =
Γ(γ)Γ(µ)

Γ(λ)Γ(ν)Γ(γ + µ− λ− ν)

∫ 1

0

tν−1(1 − t)γ+µ−λ−ν−1(1.5)

· 2F1(µ− λ, γ − λ; γ + µ− λ− ν; 1− t) 3F2(α, β, µ; λ, ν; tz) dt,

where Re(λ, ν, γ+µ−λ−ν) > 0. Erdélyi also considered special cases and confluent
limit cases of his formulas and some formulas obtained by applying transformation
formulas to the hypergeometric functions in the integrands.

Let n = 0, 1, 2, . . . . In [5] the author pointed out some important applications
of Erdélyi’s fractional integral (1.3) (such as to derive Dirichlet-Mehler type inte-
gral representations for Jacobi polynomials and for generalized Legendre functions,
and to prove the positivity of certain sums of generalized Legendre functions) and
derived the following discrete analogue of (1.3) for 3F2 series

3F2(α, β,−n; γ, δ; 1) =
n∑

k=0

(
n

k

)
(µ)k(λ + δ − α− β)k(γ − µ)n−k

(γ)n(δ)k
(1.6)

· 3F2(λ− α, λ− β,−k; µ, λ + δ − α− β; 1)

· 3F2(α + β − λ, λ− µ, k − n; γ − µ, δ + k; 1),

where, as elsewhere, we use the standard notations in the Gasper and Rahman book
[7] for the shifted factorial (a)n, generalized hypergeometric functions, etc. This
formula led to a Dirichlet-Mehler type formula for the Hahn polynomials. Formula
(1.3) follows from (1.6) by replacing n, k, δ in (1.6) by Nz, Nzt,−N, respectively,
letting Nz → +∞ through integer values of Nz with z fixed and 0 < z < 1, and
then using analytic continuation with respect to z.

In this paper we will show that (1.6) has a q-analogue of the form

3φ2(α, β, q−n; γ, δ; q, q) =
n∑

k=0

[
n

k

]
q

(µ, λδ/αβ; q)k(γ/µ; q)n−k

(γ; q)n(δ; q)k
µn

(
αβ

λµ

)k

(1.7)

· 3φ2(λ/α, λ/β, q−k; µ, λδ/αβ; q, q)

· 3φ2(αβ/λ, λ/µ, qk−n; γ/µ, δqk; q, q).

It can be shown that (1.6) is a limit case of (1.7) by replacing the parameters
α, β, γ, δ, λ, µ in (1.7) by qα, qβ , qγ , qδ, qλ, qµ, respectively, and letting q → 1−.
In addition, by letting 0 < q < 1, which will be assumed to hold in the fol-
lowing q-integral (see [7, §1.11]) formulas, replacing k, α, β, γ, δ, λ, µ in (1.7) by
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n − k, qα, qβ, qγ , q1−n/z, qλ, qµ, respectively, and then setting t = qk and letting
n → +∞, we obtain that Erdélyi’s fractional integral (1.3) has the fractional q-
integral analogue

2φ1(qα, qβ ; qγ ; q, z) =
Γq(γ)

Γq(µ)Γq(γ − µ)

∫ 1

0

tµ−1 (tq, tzqα+β−λ; q)∞
(tqγ−µ, tz; q)∞

(1.8)

· 2φ1(qλ−α, qλ−β ; qµ; q, tzqα+β−λ)

· 3φ2(qα+β−λ, qλ−µ, t−1; qγ−µ, q/tz; q, q) dqt,

where Re γ > Re µ > 0 and the q-integral is defined by∫ 1

0

f(t) dqt = (1− q)
∞∑

n=0

f(qn) qn.

For additional information about fractional q-integrals see [7, §1.11 and the Notes
for §1.11 on p. 29]. It is clear that (1.8) tends to (1.3) as q → 1− since

lim
q→1−

Γq(γ) = Γ(γ)

and, by the q-binomial theorem [7, §1.3],

lim
q→1−

(tq; q)∞
(tqγ−µ; q)∞

(tzqα+β−λ; q)∞
(tz; q)∞

= (1 − t)γ−µ−1(1− tz)λ−α−β .

Hence, (1.7) is both a discrete analogue of (1.8) and a discrete q-extension of (1.3).
Setting λ = α + β in (1.8) and then replacing µ by λ gives

2φ1(qα, qβ; qγ ; q, z) =
Γq(γ)

Γq(λ)Γq(γ − λ)

∫ 1

0

tλ−1 (tq; q)∞
(tqγ−λ; q)∞

(1.9)

· 2φ1(qα, qβ; qλ; q, tz) dqt,

where Re γ > Reλ > 0, which is a q-analogue of Bateman’s integral (1.2). Thomae’s
(see [7, (1.11.9)]) q-analogue of Euler’s integral (1.1)

2φ1(qα, qβ; qγ ; q, z) =
Γq(γ)

Γq(β)Γq(γ − β)

∫ 1

0

tβ−1 (tq, tzqα; q)∞
(tqγ−β , tz; q)∞

dqt,(1.10)

where Re γ > Re β > 0, and its q-beta integral [7, (1.11.7)] special case are special
cases of both (1.8) and (1.9).

We will also show that Erdélyi’s formulas (1.4) and (1.5) have the discrete
q-extensions:

3φ2(α, β, q−n; γ, δ; q, q) =
n∑

k=0

[
n

k

]
q

(λ, δ/α′; q)k(γ/λ; q)n−k

(γ; q)n(δ; q)k
λn

(
α′

λ

)k

(1.11)

· 3φ2(α/α′, β, q−k; λ, δ/α′; q, q)

· 3φ2(α′, β/λ, qk−n; γ/λ, δqk; q, q)

and

3φ2(α, β, q−n; γ, δ; q, q) =
n∑

k=0

[
n

k

]
q

(λ; q)n(ν; q)k(γµ/λν; q)n−k

(γ, µ; q)n
νn−k(1.12)

· 3φ2(µ/λ, γ/λ, qk−n; γµ/λν, q1−n/λ; q, q1−k/ν)

· 4φ3(α, β, µ, q−k; λ, ν, δ; q, q).
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As in the derivation of (1.8) as a limit case of (1.7), formulas (1.11) and (1.12),
respectively, have as limit cases the following q-integral analogues of Erdélyi’s frac-
tional integrals (1.4) and (1.5):

2φ1(qα, qβ ; qγ ; q, z)(1.13)

=
Γq(γ)

Γq(λ)Γq(γ − λ)

∫ 1

0

tλ−1 (tq, tzqα′ ; q)∞
(tqγ−λ, tz; q)∞

· 2φ1(qα−α′ , qβ; qλ; q, tzqα′) 3φ2(qα′ , qβ−λ, t−1; qγ−λ, q/tz; q, q) dqt,

where Re γ > Re λ > 0, and

2φ1(qα, qβ ; qγ ; q, z)(1.14)

=
Γq(γ)Γq(µ)

Γq(λ)Γq(ν)Γq(γ + µ− λ− ν)

∫ 1

0

tν−1 (tq; q)∞
(tqγ+µ−λ−ν ; q)∞

· 3φ1(qµ−λ, qγ−λ, t−1; qγ+µ−λ−ν ; q, tqλ−ν) 3φ2(qα, qβ, qµ; qλ, qν ; q, tz) dqt,

where Re(λ, ν, γ +µ−λ− ν) > 0. Direct derivations of (1.8), (1.13), and (1.14) can
be given by using the q-beta integral and transformation formulas. The fractional
q-integral formulas (6.6) and (6.7) in Al-Salam and Verma [1], with the missing
factor (1 − q)γ−λ inserted in front of each q-integral, follow from (1.14) and (1.8),
respectively, by applying the transformation formula [7, Ex. 1.15(ii)] with qn = t
to the 3φ1 series in (1.14), and the transformation formulas [7, (III.13) and (III.12)]
to the 3φ2 series in (1.8).

After obtaining the above formulas, the author realized that their derivations
could be extended to give more general expansion formulas that contained termi-
nating balanced 4φ3 series, and hence were applicable to the most general classical
orthogonal polynomials (see [2] and [7]), the q-Racah polynomials

Wn (x; a, b, c, N ; q) = 4φ3

[
q−n, abqn+1, q−x, cqx−N

aq, bcq, q−N ; q, q

]
and the Askey-Wilson polynomials

pn(x; a, b, c, d | q) = a−n(ab, ac, ad; q)n 4φ3

[
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

]
,

where x = cos θ, and to their hypergeometric and basic hypergeometric limit cases.
These derivations, whose limit cases give direct derivations of formulas (1.7) –
(1.14), will be presented in §§ 2–4. In §5 we derive some new summation formulas
for double hypergeometric and basic hypergeometric Kampé de Fériet series, one
of which contains as a limit case the sum of a double q-Kampé de Fériet series
that arose in work of J. Van der Jeugt, S.N. Pitre, and K. Srinivasa Rao on the
evaluation of the 9-j recoupling coefficients, and was stated without proof in [11,
(40)], see [9, p. 129].

2. Derivation of a terminating balanced 4φ3 extension of (1.7)

Let

αβνq = γδε(2.1)

so that

Φn = 4φ3(α, β, νqn, q−n; γ, δ, ε; q, q)(2.2)



q-EXTENSIONS 5

is a terminating balanced 4φ3 series. Notice that if we use the balanced condition
(2.1) to set ε = αβνq/γδ in the above 4φ3 series and let ν → 0, then Φn tends to
the 3φ2(α, β, q−n; γ, δ; q, q) series that are on the left-hand sides of formulas (1.7),
(1.11), and (1.12).

In order to give a 4φ3 extension of the derivation of (1.6) in [5], we first observe
that

Φn = An

n∑
j=0

(νλ/γ, λ, νq−n; q)j(νλq/γ; q)2j

(q, νq/γ, λq1−n/γ, νλqn+1/γ; q)j(νλ/γ; q)2j

(
q

γ

)j

(2.3)

· 4φ3(α, β, νλqj/γ, q−j; λ, δ, ε; q, q)

with

An =
(γ/λ, νq/γ; q)n

(γ, νλq/γ; q)n
λn,(2.4)

by changing the order of summation on the right-hand side of (2.3) and using the 6φ5

summation formula [7, (2.4.2)]. Apply the Sears’ [10], [7, (2.10.4)] transformation
formula for terminating balanced 4φ3 series to the 4φ3 series in (2.3) to obtain

4φ3(α, β, νλqj/γ, q−j; λ, δ, ε; q, q)(2.5)

=
(δγ/νλqj , εγ/νλqj; q)j

(δ, ε; q)j

(
νλqj

γ

)j

· 4φ3(λ/α, λ/β, νλqj/γ, q−j; λ, λδ/αβ, λε/αβ; q, q)

=
(δγ/νλqj , εγ/νλqj, λ/µ, νq/γ; q)j

(δ, ε, λ, νµq/γ; q)j

(
νλµqj

γ

)j

·
j∑

k=0

(νµ/γ, µ, νλqj/γ, q−j; q)k(νµq/γ; q)2k

(q, νq/γ, µq1−j/λ, νµqj+1/γ; q)k(νµ/γ; q)2k

( q

λ

)k

· 4φ3(λ/α, λ/β, νµqk/γ, q−k; µ, λδ/αβ, λε/αβ; q, q).

Now substitute (2.5) into (2.3), change the order of summation, and then apply
some of the identities in [7, Appendix I] to simplify the products of q-shifted fac-
torials and get

Φn = An

n∑
k=0

(λε/αβ, λδ/αβ, νµ/γ, µ, νqn, q−n; q)k(νλq/γ; q)2k

(q, δ, ε, νq/γ, νλqn+1/γ, λq1−n/γ; q)k(νµ/γ; q)2k

(
εδ

λν

)k

(2.6)

· 8W7(νλq2k/γ; λ/µ, νλqk+1/γδ, νλqk+1/γε, νqn+k, qk−n; q, εδµ/νλ)

· 4φ3(λ/α, λ/β, νµqk/γ, q−k; µ, λδ/αβ, λε/αβ; q, q).
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Since, by the transformation formulas [7, (III.18) and then (III.15)],

8W7(νλq2k/γ; λ/µ, νλqk+1/γδ, νλqk+1/γε, νqn+k, qk−n; q, εδµ/νλ)(2.7)

=
(νλq2k+1/γ, µεqk/λ; q)n−k

(νµq2k+1/γ, εqk; q)n−k

· 4φ3(λ/µ, δ/νqn, νλqk+1/γε, qk−n; δqk, λq1+k−n/γ, λq1−n/µε; q, q)

=
(νλq2k+1/γ, µεqk/λ, q1−n/ε; q)n−k

(νµq2k+1/γ, εqk, λq1−n/µε; q)n−k

(
λ

µ

)n−k

· 4φ3(αβ/λ, λ/µ, νqk+n, qk−n; γ/µ, δqk, εqk; q, q),

it follows from (2.1), (2.2), (2.4), (2.6), and (2.7) that we have the expansion

4φ3(α, β, νqn, q−n; γ, δ, ε; q, q)(2.8)

=
(γ/µ, νq/γ; q)n

(γ, νµq/γ; q)n
µn

·
n∑

k=0

(νµ/γ, µ, λδ/αβ, λε/αβ, νqn, q−n; q)k(νµq/γ; q)2k

(q, νq/γ, ε, δ, µq1−n/γ, νµqn+1/γ; q)k(νµ/γ; q)2k

(
εδ

λν

)k

· 4φ3(λ/α, λ/β, νµqk/γ, q−k; µ, λδ/αβ, λε/αβ; q, q)

· 4φ3(αβ/λ, λ/µ, νqk+n, qk−n; γ/µ, δqk, εqk; q, q)

with αβνq = γδε, which is the desired 4φ3 extension of (1.7). Notice that the three
4φ3 series in (2.8) are terminating balanced series, and that (1.7) follows from (2.8)
by setting ε = αβνq/γδ in (2.8) and then letting ν → 0.

Moreover, if we replace the parameters α, β, γ, δ, ε, λ, µ, ν in (1.7) by qα, qβ , qγ ,
qδ, qε, qλ, qµ, qν , respectively, and then let q → 1−, we obtain the expansion

4F3(α, β, n + ν,−n; γ, δ, ε; 1) =
(γ − µ)n(1 + ν − γ)n

(γ)n(1 + ν + µ− γ)n

n∑
k=0

(ν + µ− γ)k

k!
(2.9)

· (µ)k(λ + δ − α− β)k(λ + ε− α− β)k(n + ν)k(−n)k(1 + ν + µ− γ)2k

(1 + ν − γ)k(ε)k(δ)k(1 + µ− γ − n)k(n + 1 + ν + µ− γ)k(ν + µ− γ)2k

· 4F3(λ− α, λ− β, k + ν + µ− γ,−k; µ, λ + δ − α− β, λ + ε− α− β; 1)

· 4F3(α + β − λ, λ− µ, n + k + ν, k − n; γ − µ, k + δ, k + ε; 1),

with α + β + ν + 1 = γ + δ + ε, which is an extension of (1.6) that contains
three terminating balanced 4F3 series. As in [5], the cases when µ = q

1
2 in (2.8)

and µ = 1
2 in (2.9), respectively, give Dirichlet-Mehler type formulas for the 4φ3

q-Racah and the 4F3 Racah polynomials.

3. Derivation of a terminating balanced 4φ3 extension of (1.11)

Since Erdélyi’s fractional integral (1.4) cannot be derived directly from his
fractional integral (1.3) by applying transformation formulas to the 2F1 functions
in the integrands, in order to derive a 4φ3 extension of (1.11) we have to proceed
substantially differently than in our derivation of (2.8).

First observe that, by the q-Saalschütz formula [7, (1.7.2)],

3φ2(α/α′, ε/α, q−k; ε, q1−k/α′; q, q) =
(εα′/α, α; q)k

(ε, α′; q)k
,
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which gives

4φ3(α, β, νqn, q−n; γ, δ, ε; q, q)(3.1)

=
n∑

k=0

(α′, β, νqn, q−n; q)k

(q, γ, δ, εα′/α; q)k
qk

k∑
j=0

(α/α′, ε/α, q−k; q)j

(q, ε, q1−k/α′; q)j
qj

=
n∑

j=0

(β, α/α′, ε/α, νqn, q−n; q)j

(q, γ, δ, ε, εα′/α; q)j
(qα′)j

· 4φ3(α′, βqj , νqn+j , qj−n; γqj , δqj , εα′qj/α; q, q)

by setting k = j + m and changing the order of summation. Next, from the λ = β
case of (2.8) we obtain that when the balanced condition (2.1) holds

4φ3(α′, βqj , νqn+j , qj−n; γqj , δqj , εα′qj/α; q, q)(3.2)

=
(γ/λ, νqj+1/γ; q)n−j

(γqj , νλq2j+1/γ; q)n−j
(λqj)n−j

n−j∑
m=0

(νλq2j+1/γ; q)2m

(νλq2j/γ; q)2m

· (νλq2j/γ, λqj , εqj/α, δqj/α′, νqn+j , qj−n; q)m

(q, νqj+1/γ, δqj, α′εqj/α, λq1+j−n/γ, νλqn+j+1/γ; q)m

(
α′q1−j

γ

)m

· 4φ3(α′, β/λ, νqn+j+m, qj+m−n; γ/λ, δqj+m, α′εqj+m/α; q, q).

Now substitute (3.2) into (3.1), set m = k − j, and change the order of sum-
mation to get the expansion

4φ3(α, β, νqn, q−n; γ, δ, ε; q, q)(3.3)

=
(γ/λ, νq/γ; q)n

(γ, νλq/γ; q)n
λn

·
n∑

k=0

(νλ/γ, λ, ε/α, δ/α′, νqn, q−n; q)k(νλq/γ; q)2k

(q, νq/γ, δ, α′ε/α, λq1−n/γ, νλqn+1/γ; q)k(νλ/γ; q)2k

(
α′q
γ

)k

· 4φ3(α/α′, β, νλqk/γ, q−k; λ, δ/α′, ε; q, q)

· 4φ3(α′, β/λ, νqn+k, qk−n; γ/λ, δqk, α′εqk/α; q, q)

with αβνq = γδε, which is a 4φ3 extension of (1.11) that contains three terminating
balanced 4φ3 series. Setting ε = αβνq/γδ in (3.3) and letting ν → 0 gives (1.11).

Proceeding as in the derivation of (2.9) from (2.8), it follows from (3.3) that

4F3(α, β, n + ν,−n; γ, δ, ε; 1)(3.4)

=
(γ − λ)n(1 + ν − γ)n

(γ)n(1 + ν + λ− γ)n

n∑
k=0

(ν + λ− γ)k(λ)k(ε− α)k

k! (1 + ν − γ)k(δ)k

· (δ − α′)k(n + ν)k(−n)k(1 + ν + λ− γ)2k

(α′ + ε− α)k(1 + λ− γ − n)k(n + 1 + ν + λ− γ)k(ν + λ− γ)2k

· 4F3(α− α′, β, k + ν + λ− γ,−k; λ, δ − α′, ε; 1)

· 4F3(α′, β − λ, n + k + ν, k − n; γ − λ, k + δ, k + α′ + ε− α; 1),

with α + β + ν + 1 = γ + δ + ε, which is a discrete extension of (1.4) that contains
three terminating balanced 4F3 series. The ν → +∞ limit case of (3.4), which
contains three terminating 3F2 series, and the expansion formulas that follow by
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applying transformation formulas to the 4φ3 and 4F3 series in (2.8), (3.3) and (2.9),
(3.4), respectively, will be omitted.

4. Derivation of (1.12) and extensions

We start by observing that if {Ak} is a sequence of complex numbers, then

n∑
k=0

(q−n, λ; q)k

(q, γ; q)k
Ak =

(λ; q)n

(γ; q)n

n∑
j=0

(q−n, γ/λ; q)j

(q, q1−n/λ; q)j
qj

n−j∑
k=0

(qj−n; q)k

(q; q)k
Ak(4.1)

by changing the order of summation and using the q-Vandermonde summation
formula [7, (1.5.3)] in the form

2φ1(qk−n, γ/λ; q1−n/λ; q, q) =
(γ; q)n(λ; q)k

(λ; q)n(γ; q)k
.

Application of formula (4.1) to the sum over k on the right-hand side (4.1) yields

n∑
k=0

(q−n, λ; q)k

(q, γ; q)k
Ak(4.2)

=
(λ; q)n

(γ; q)n

n∑
j=0

(q−n, γ/λ; q)j

(q, q1−n/λ; q)j
qj (ν; q)n−j

(µ; q)n−j

·
n−j∑
m=0

(qj−n, µ/ν; q)m

(q, q1+j−n/ν; q)m
qm

n−j−m∑
r=0

(qj+m−n, µ; q)r

(q, ν; q)r
Ar

=
(λ, ν; q)n

(γ, µ; q)n

n∑
k=0

(
k∑

r=0

(q−k, µ; q)r

(q, ν; q)r
Ar

)
(q−n, µ/ν; q)n−k

(q, q1−n/ν; q)n−k
qn−k

· 3φ2(qk−n, q1−n/µ, γ/λ; νq1+k−n/µ, q1−n/λ; q, q)

after setting m = n− j − k.
Now apply the transformation formula [7, (3.2.2)] to the 3φ2 series in (4.2) to

obtain the expansion formula

n∑
k=0

(q−n, λ; q)k

(q, γ; q)k
Ak(4.3)

=
(λ, ν; q)n

(γ, µ; q)n

n∑
k=0


 k∑

j=0

(q−k, µ; q)j

(q, ν; q)j
Aj


 (q−n, γµ/λν; q)n−k

(q, q1−n/ν; q)n−k
qn−k

· 3φ2(µ/λ, γ/λ, qk−n; γµ/λν, q1−n/λ; q, q1−k/ν),

which is an extension of (1.12) since it gives (1.12) when

Ak =
(α, β; q)k

(λ, δ; q)k
qk.
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Similarly, (4.3) also gives the following r+2φs+1 extension of (1.12)

r+2φs+1

[
q−n, λ, a1, a2, . . . , ar

γ, b1, . . . , bs
; q, z

]
(4.4)

=
(λ, ν; q)n

(γ, µ; q)n

n∑
k=0

(q−n, γµ/λν; q)n−k

(q, q1−n/ν; q)n−k
qn−k

· 3φ2

[
µ/λ, γ/λ, qk−n

γµ/λν, q1−n/λ
; q, q1−k/ν

]

· r+2φs+1

[
q−k, µ, a1, a2, . . . , ar

ν, b1, . . . , bs
; q, z

]
.

and, as a limit case, a corresponding extension of (1.14), which we omit. The above
extensions of (1.12) can also be derived by applying transformation formulas to
special cases of the rather general expansion formulas in [6, (4.2) and (4.5)] and [7,
(3.7.3) and (3.7.6)].

5. Summation formulas for some basic Kampé de Fériet series

In a June 1, 1994, email message to the author, Joris Van der Jeugt conjectured
that if |a|, |b| < 1 and |q| > 1, then

Φ0:3
1:1

[ −
de/bc

:
c/a, d/c, e/c

1/a
;
a/c, d/b, e/b

1/b
; q, q; q

]
=

(c, ab/c; q−1)∞
(a, b; q−1)∞

,(5.1)

where Φ0:3
1:1 is the double basic hypergeometric Kampé de Fériet series defined by

Φ0:3
1:1

[−
c

:
a1, a2, a3

a4
;
b1, b2, b3

b4
; x, y; q

]
(5.2)

=
∞∑

j,k=0

(a1, a2, a3; q)j(b1, b2, b3; q)k xjyk

(c; q)j+k(q, a4; q)j(q, b4; q)k
,

which is also called a double q-Kampé de Fériet series. Van der Jeugt also observed
that by inverting the base (i.e., replacing q by q−1) and using the identity

(a; q−1)n = (a−1; q)n(−a)nq−(n
2) ,

formula (5.1) can be written in the equivalent form
∞∑

j,k=0

(a/c, c/d, c/e; q)j(c/a, b/d, b/e; q)kb
jakqjk

(bc/de; q)j+k(q, a; q)j(q, b; q)k
=

(c, ab/c; q)∞
(a, b; q)∞

(5.3)

with |a|, |b|, |q| < 1, which, due to the qjk power in the argument of the double
series in (5.3), cannot be written in terms of the Φ0:3

1:1 function defined in (5.2).
This conjecture arose in trying to find a q-analogue of the summation formula (34)
for a Kampé de Fériet F 0:3

1:1 series in the work of J. Van der Jeugt, S.N. Pitre, and
K. Srinivasa Rao [11] on the evaluation of the 9-j recoupling coefficients appearing
in the quantum theory of angular momentum.

On June 6, 1994, the author sent Van der Jeugt a proof of (5.3) and the deriva-
tion of a q-analogue of Erdélyi’s fractional integral (1.5) by using the q-binomial
integral [7, (1.11.7)], the transformation formula [7, III.3], the q-Gauss sum [7,
II.8] and changes in order of summation. This enabled Van der Jeugt, Pitre, and
Srinivasa Rao to state formula (5.1) in [11, (40) with a change in parameters], and
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inspired them to use similar methods to derive the transformation and summation
formulas contained in [11], [12], [13], also see [9]. It also started the author’s work
on the derivation of the formulas contained in this paper.

To save space, rather than presenting the author’s original proof of (5.3), we
will first derive an extension of (5.3) to Φ1:3

1:2 series and then obtain (5.3) as a limit
case of it. A limit case of the following argument gives a direct proof of (5.3). Let
ν = α and γδ = αβq1−n. Then the 3φ2 series on the left-hand side of (1.12) can be
summed by the q-Saalschütz formula [7, (II.12)], and the 4φ3 series on the right-
hand side (1.12) reduces to a 3φ2 series that can be transformed via [7, (III.11)] to
get

(γ/α, γ/β; q)n

(γ, γ/αβ; q)n
=

n∑
k=0

[
n

k

]
q

αn(λ; q)n(α, δλ/βµ; q)k(γµ/αλ; q)n−k

(γ, µ; q)n(δ; q)k
(
βµ

αλ
)k(5.4)

· 3φ2(µ/λ, γ/λ, qk−n; γµ/αλ, q1−n/λ; q, q1−k/α)

· 3φ2(λ/β, λ/µ, q−k; λ, δλ/βµ; q, q).

By denoting the indexes of summation of the first and second 3φ2 series on the
right-hand side (5.4) be i and j, respectively, setting k = j + m, and changing the
order of summation, we find that sum over m is a 2φ1 series that can be summed
via the q-Gauss sum [7, II.8]. This yields the summation formula

∞∑
j,k=0

(q−n; q)j+k(µ/λ, γ/λ, γ/αβ; q)j(λ/β, λ/µ, α; q)kqjqk

(γ/β; q)j+k(γµ/αλ, q1−n/λ, q; q)j(λ, αλq1−n/γµ, q; q)k
(5.5)

=
(γ/α, µ; q)n

(λ, γµ/αλ; q)n

with n = 0, 1, 2, . . . . The double series in (5.5) terminates since (q−n; q)j+k = 0
when j + k > n.

Setting
α = b/d, β = e, γ = bc/d, λ = b, µ = ab/c

converts (5.5) to the formula

Φ1:3
1:2

[
q−n

bc/de
:

a/c, c/d, c/e

a, q1−n/b
;
c/a, b/d, b/e

b, q1−n/a
; q, q; q

]
=

(c, ab/c; q)n

(a, b; q)n
(5.6)

with n = 0, 1, 2, . . . , where

Φ1:3
1:2

[
c1

c2
:

a1, a2, a3

a4, a5
;
b1, b2, b3

b4, b5
; x, y; q

]
(5.7)

=
∞∑

j,k=0

(c1; q)j+k(a1, a2, a3; q)j(b1, b2, b3; q)k xjyk

(c2; q)j+k(q, a4, a5; q)j(q, b4, b5; q)k
.

Since formula (5.3) is the n → ∞ limit case of (5.6), this completes our proof of
(5.3).

Notice that if we replace the parameters a, b, c, d, e in (5.6) by qa, qb, qc, qd, qe,
respectively, and then let q → 1, we obtain the summation formula

F 1:3
1:2

[ −n

b + c− d− e
:

a− c, c− d, c− e

a, 1− n− b
;
c− a, b− d, b− e

b, 1− n− a
; 1, 1

]
=

(c)n(a + b− c)n

(a)n(b)n

(5.8)
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with n = 0, 1, 2, . . . , where F 1:3
1:2 is the double hypergeometric Kampé de Fériet

series defined by

F 1:3
1:2

[
c1

c2
:

a1, a2, a3

a4, a5
;
b1, b2, b3

b4, b5
; x, y

]
(5.9)

=
∞∑

j,k=0

(c1)j+k(a1)j(a2)j(a3)j(b1)k(b2)k(b3)k xjyk

(c2)j+k(a4)j(a5)j(b4)k(b5)k j! k!
.

The n →∞ limit case of (5.8)

F 0:3
1:1

[ −
b + c− d− e

:
a− c, c− d, c− e

a
;
c− a, b− d, b− e

b
; 1, 1

]
(5.10)

=
Γ(a)Γ(b)

Γ(c)Γ(a + b− c)
, Re a > 0, Re b > 0.

which is equivalent to [11, (34)], was proven in Per W. Karlsson [8] by applying a
reduction formula to a double Eulerian integral representation for F 0:3

1:1 series and
using Gauss’ summation formula

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re c > Re(a + b), c 6= 0,−1,−2, . . . ,

and analytic continuation. Our derivation of (5.5) shows that one can also derive
formula (5.10) from Erdélyi’s fractional integral (1.5) by applying the transforma-
tion formula 2F1(a, b; c; z) = (1−z)c−a−b

2F1(c−a, c−b; c; z) to the ν = α case of the
hypergeometric series on the right-hand side of the integrand in (1.5), integrating
termwise via the beta integral, letting z → 1−, summing the 2F1(α, β; δ; 1) series
on the left-hand side of the equation with Gauss’ summation formula, and then
using analytic continuation. Additional summation formulas for hypergeometric
and basic hypergeometric Kampé de Fériet series will be considered elsewhere.

I would like to thank Joris Van der Jeugt for encouraging me to work on proving
formulas (5.1) and (5.3), and for sending preprints of [9] and [11].
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