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Abstract. In 1991 Tratnik derived two systems of multivariable orthogonal Racah polynomials
and considered their limit cases. g¢-Extensions of these systems are derived, yielding systems of
multivariable orthogonal ¢-Racah polynomials, from which systems of multivariable orthogonal
g-Hahn, dual ¢-Hahn, g-Krawtchouk, ¢-Meixner, and g-Charlier polynomials follow as special or

limit cases.
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1. Introduction

The Racah polynomials [1, 2, 25], defined by

() = ro(z; 0, 8,7, N)
= (a + 1)n(ﬂ + v+ 1)n(_N)n

—n,n+a+pB+1,—z,2+v-N
F: ’ Y ;1 1.1
X43[ a+1,8+y+1,-N ’ (1.1)
forn=20,1,..., N, satisfy the discrete orthogonality relation
N
z=0

for n,m =20,1,..., N, with the weight function

p(z) = p(x;a, 8,7, N)
_Y=N+2z (v =N)e(a+1)(B+7+1)a(=N)e

y=N  al(y—a—N)y(=8—N)u(y+1), )
and the normalization constant
An = An(a, 8,7, N)
i ot Bt Dni(at Dn(B+ Dn(=N)n (1.4)

(a+B8+14+2n)(a+8+1),

* Department of Mathematics, Northwestern University, Evanston, IL 60208.
1 School of Mathematics and Statistics, Carleton University, Ottawa, ON, K1S 5B6, CANADA.

Supported in part by NSERC grant #A6197.



where N is a nonnegative integer. In 1991 Tratnik [24] extended the Racah polynomials to a system
of multivariable orthogonal polynomials (in a slightly different notation)
Rn(x) = Ru(x;0a1,...,a511,m, N)

Tng (@ — Np—1;2Ng—1 + 0+ o — a1, o641 — L, N1 + ag + Tgg1, 41 — Nig—1), (1.5)

k=1
where
x = (21,...,%5), Tsy1 =N, n=(nq,...,ns), No =0,
k k
Nk:an, 1<k<s, ak:Zaj, 1<k<s+1, (1.6)
j=1 j=1

and Ny < N. Clearly, R,(x) is a polynomial of total degree N in the variables yi,...,ys with

Yk :xk(xk—i—ozk), k=1,...,s.
Tratnik showed that these polynomials satisfy the discrete orthogonality relation

> Ru(x) R (%)p(x) = Andnm (1.7)

for Ny, My < N, where M = Zle m; and the summation is over all x = (z1,...,zs) with
zp=0,1,...,Nfork=1,...,8, 0nm = [] On, ,ms, the weight function is
k=1
p(X) :p(x;a’la"'aa5+1an7N)

_ NIT(as+N+1)  (a)e,(n+1)a,
F(as+1 + N)F(Oé5+1 + N) xl! (al - 77)11

o ﬁ D(apg1 +2pp1 — o)y + Tpgn + 2p) ag + 22y,

1.8
P (pt1 — zi)! T(a + g1 + x5 + 1) a (18)
and
>\n = /\n(al, ey Qg41, 1), N)
= (as + N)n,(n+1—a1 — N)ny,(—N)n,
I'(ar —n)'as + N+ DI'(as41 —a1 +n+ Ns+ N +1)
F(a)T'(n+ DI'(as41 + N)I'(ay —n+ N)
X H aglnk! (g1 — a1+ 1+ Nk + Ni—1)n,
k=1
y [(ag+1 +ni)T(ag — a1 + N + N1 + 1) (1.9)

F(ogs1 —a1 +n+ 2N, +1)
Note that p(x) = 0 if zx41 < x for some k < s. He also pointed out the special case of the
multivariable Hahn polynomials of Karlin and McGregor [14], the limit cases of the multivariable
Krawtchouk, Meixner and Charlier polynomials, and used permutations of the parameters and
variables to derive a second system of polynomials that are orthogonal with respect to the weight

function in (1.8).



In this paper we derive g-extensions of Tratnik’s Ry(X;a1,...,as+1,7,N) polynomials and of
his second system of multivariable orthogonal Racah polynomials, from which systems of multi-
variable orthogonal ¢-Hahn, dual g-Hahn, ¢-Krawtchouk, g-Meixner, and ¢-Charlier polynomials
follow as special or limit cases. Some g-extensions of Tratnik’s [23] multivariable orthogonal Wilson
polynomials and of his [21] multivariable biorthogonal generalization of the Wilson polynomials are
given in our papers [11] and [10], respectively.

The authors wish to thank Michael Schlosser for his useful comments on the original version

of this paper.
2. Multivariable orthogonal ¢-Racah polynomials.

Analogous to (1.1) we define the g-Racah polynomials [2] by

rn(r5q) = ro(x;0,b,¢, N3 q)

= (aq,beq, ¢ N5 q)n (g Je)/?

q ", abg" g, "N
X 4@3 |: aq, bcq,q_N 34,4 (21)
forn=0,1,..., N, where
n—1 k
(@;q)n = [J (1 —ad®), (a1,...,ax;0)n = [[(a5; )n.
k=0 j=1

and we use the notation of our book [9]. The power (¢ /c)™/? is chosen in (2.1) so that certain sym-
metry properties of the g-Racah polynomials are satisfied; for example, by the Sears transformation

formula [9, (2.10.4)] it follows from (2.1) that

rn(x3a,b,¢, N3 q) = (N — 23b,a,¢7, N q). (2.2)

Note that 7,(x;q) is a polynomials of degree n in the variable z = ¢=% + c¢® V.

Askey and Wilson [2] showed that the g-Racah polynomials satisfy the orthogonality relation
[9, (7.2.18)]

N
Zrn(ZQQ)Tm<x§Q)p($;Q) = /\n(Q)(sn,m (23)

=0

forn,m=0,1,..., N, with

p(x;q) = p(x;a,b,¢, N;q)

1—cg> N (g™, aq,beq,qg;q)s

1—cqg™V (q,ca g N, b71q N cq;q)s

(abg) ™" (2.4)

and

An(Q) = )\n(ay ba C, N, Q)



(Cilﬂa‘bq2;Q)N -N
= - b b N n
(aq/c,b4: Q) (q,aq,bq,aq/c,beq, g~ ; q)

1—abg (abgV "2 q)n

X 2.5
1—abg®"+! (abg; q)n (2:5)
Analogous to (1.5) we define the multivariable ¢g-Racah polynomials by

Rn(x;9) = Rn(x5a1,...,a541,b,N;q)

=[] o @k — Nec15 045> far, apgrq™" Apg™ N1y — Ni_i3 ), (2.6)

k=1
where, in addition to the definitions of x, n, zs41 and Ny given in (1.6), we let
k

Ao=1, Ag=]Ja;, k=1,...,s+1L (2.7)

j=1

Note that R,(x;¢) is a polynomial of total degree N in the variables z1, ..., zs where
zk=q T+ Apg™t, k=1,...,s.

In order to derive an orthogonality relation for these polynomials we start by considering the

following g-extensions of the weight function p(x) in (1.8):

p(Xa Q) = p(X, ag, .. 'aas-‘rl?ba Na Q)
(¢:94s;9)n  (a1,bq; q)z,
(as+17 Aerl; Q)N (Q7 al/b; Q)ml

y f[ (ak+1; Q)zk+1—wk(Ak+l;Q)mk+1+xk(1 - Aqux’“)

(Cr,s) ™", (2.8)
et (@5 Qpoyr—an (QAR Qo1 42y, (1 — Ag)
where ¢ 4,...,¢s s are to be determined (see (2.15)) so that the orthogonality relation
N Ts 3 Z2
DY D)0 D RBa(x:0)Rm(x0)p(%:9) = An(9)dnm (2.9)
rxs=0xs_1=0 x2=0x1=0

holds for Ny, My < N and certain normalization constants An(q), which will be given in (2.14).

The summation over z; in (2.9) can be evaluated via (2.3), which is derived in [9, §7.2] by

means of the terminating ¢¢s summation [9, (2,4,2)], to obtain for s > 2 that

i (01,06; @), (02 Dz (A2 Dyt (L= ™) (o
(4,01/6; @)1 (@) ~21 (0165 @)y, (1 — 1) i

21=0
X Ty (2130, 02471, 4167, 225 Q)rm, (2130, a2¢ ™" a1¢™, x93 q)
_ 1—asb (bg,a2,q,A2,bA2q/a1;q)n, (ﬁ)"l n?
1 — agbg®™ (a2b; q)n, ay 1
(A2q™,bA2q™ ! /a1; q)u,
(4 Qo —ny (a1/0; @)y —n,
provided we choose ¢; ¢ = bg for s > 2. In the single variable case s = 1 it is clear from (2.3) and

(bg*™thy =25, (2.10)

(2.4) that ¢; 1 = bg, and hence we conclude that ¢; 3 = bg for s > 1.
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By doing the summations over 1,2, ...,z; in (2.9) for small j one is led to conjecture that

after summing over z1,...,x; in (2.9) and setting ¢, s = ay for 2 < k < s — 1 we have

ﬁ (1 —bAxy1/a1) (@, 0k41; @)y, (DARG/a15 Q) N+ N,y 5
e1 (1 — bAk:+1q2Nk/a1) (bAk+1/a1;q)Nk+Nk_1 N, ML

(Aj+17 quj+l/al; Q)Nj+$j+1 (ﬁ)qusz (bqu2Nj—H>—ﬂﬁj+1
(Q7a1/b; q)il?j+1—Nj ap

; (2.11)

as the sum for j =1,2,...,s — 1.
To prove (2.11) by induction on j, assume that j < s — 2 for s > 3, multiply (2.11) by the

remaining x;i-dependent part of the weight function and polynomials, and then sum over x;4

to get

1 —bAr+1¢?Nr Jaq) (bAk+1/a15 Q) N+ Ne s

Tjy2

« (E)quN? Z (Aj11,9bA501/015 Q)N a1 (bquQNﬂ'“)fﬂHl

[ﬁ (1 —=0Aks1/a1) (g, ak-i—l;Q)nk(quk/al;Q)Nk+Nk_16
( nE, Mg

k=1

ai $j+1=O ((:I7 al/b; Q)$j+1fNj aq
(a+2; q)ﬂ”j+2_f”j+1 (Ajr2; Q)zj+2+zj+1 (1- Aj+1q21,j+l) ajy1)” Tt
(q; q)ﬂﬁj+2—13j+1 (qu—i-l; q)xj+2+Ij+1 (1 - Aj+1)
X Tny oy (Tj41 — Ny bAquzNj /a1, aj+2q_17 Aj+1qu+wj+2,fL'j+2 — Nj;q)
X Typr (Tj1 — Nj3bAj16*N Jar, aj42q7 " Ajrg™ 902 2500 — Ny q). (2.12)

Note that the summand above vanishes for 0 < x;11 < N;. Hence, the sum is effectively from

xj4+1 = N;j to zj42. Replacing z;41 — N; by x, say, the sum in (2.12) then becomes

(Ajp1,0bAj01/a1;9)2n, (05423 Q)ayr0—N, (A2 Qg o, (1 — Ajrrg?7)
(€D zjyn—N; (@A 115 Qo N; (1 — Aji)

N, T2 2N, 42 2N N;+a;40.
2Nj+1> o (1= AN H27) (Aja gV, Ajrag™iiv2,q),

= (1=Ajnae*) (g, ¢V e fagie1q).

(bAj_i_lqm\ljJrl/al7 gNi—zi+z, Qe (bAj+2 quJ) —x
(a1/b, Ajy1qNitoivatlig), ay

: 2N, -1
XTnj+1<$7bAj+1q /a1, a542q9" ", Ajy1q

X(%

ax

q

N,+x; .
J ]+27xj+2_Nj7Q)

X Ty (23045416°N Jar, ajroq™ "t Ajpa g2 2000 — Njiq)
(qu+17 quj+1/a1§ Q)zNj (%’+2; Q)wj+2—Nj (Aj+2; q)mj+2+Nj
(q7 q)xj+27Nj (qA]+17 Q)mj+2+Nj

bAjs1 on, 41\ N 2N;+1 Nj+zjio Nj—z;42
X(qu J ) (@, 0A;1q™ T Jar, ajqg, Ajpoq i TN g T ;Q)nj+1
(1 = bAj26*" Jar) (DA 42¢™ 542 Jar; g
(1= bAjoqNitit2 fay)(bAj 2> Ni Jar; @)n,.,

X
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(g N2 A 1, bAj0g* NV a1 @)y n- N
X Nj—zjt2+1 0
(bgNi—Tj+2 /alaaj+2;q)93j+2_Nj

Tj+1:MG+1

by (2.3). Substituting this into (2.12) and simplifying, we find that the right-hand side of (2.12) is
(2.11) with j replaced by j + 1. This proves (2.11).

Now set j = s — 1 in (2.11) and substitute into the left-hand side of (2.9) to find that if we set

Cs,s = ag for s > 2, then

> Ba(x:4) R (x;9)p(x; q)

=3 Y Y Y Ralxig) B plxia)

xs=0 xs_1=0 x2=0 x1=0

_ 81—[1 (1 = bAgy1/a1)(q, akr1; @)ny, (¢0AR/a1; Q) Ny 1 N, 5
it (U= bAga Ve far) (VA1 Jav NN,

y (¢, As, qbAs/ar;Q)an, , (As1d™ V59N, (Ao
(AsqN_‘_lvql_N/as—i-l;Q)stl o

- (1 — Agq2Nem1+20) (Agq?Ner Bha2Nea bl Ay gNHNemr gNema =N g,
= (1-Ag*N) (¢, a1/, g = NFNe=1 Jag g, AggNtNm1+1q),

" (bAs+1 RIS

ay

—1)_stl

NﬁNS*l

1) o (2304562 Jay, a50107 Y, AV TN N — No_y159)

X Tms (fl?, bAsq2NS71/a17 as+1q_17 ASqN+NS71 ) N — Ns—l; q)

= An(0)0n.m (2.13)
with

)\n(Q) - )\n(ala ey Qg4 b7 Na Q)
_ (qu,qusH/al;q)N( ay )N
(as+1,al/b§ Q)N qus
(bA 10" ar, Asi1q™ bg" N Jar, a7V q)n,

% H Q7ak+17 nk(quk/ala )Nk+Nl~c 1( _bAk+1/a1)

(0Ak+1/01; QN4 Ny—y (1 = DAk 41g°NE [an) @14
where, in the weight function p(x;¢q) in (2.8) we set
c1s=>bg fors>1, cps=ar for2<k<s, (2.15)
which completes the proof of (2.9) with
Asg; ai,bq; aj\*1
)= G S e G
y ﬁ (k113 Dagrr —20 (Akt15 Dy 4 (1 — Akqm)a;xk‘ (2.16)

i (G Do -2 (@A Doy o (1 — Ak)

6



Analogous to Tratnik’s [24] permutations of the parameters and variables, we consider the

following permutations

a1<—>(Asq2N)_1, Qpy1 < Qs—pt1, k=1,...,5—1,

asy1 <— bq, xp — N — s py1, k=1,... 5. (2.17)
Clearly the summation region in (2.9) remains unchanged under these permutations, and the weight

function p(x;¢q) in (2.16) changes to a multiple of itself, namely,

(ast1,a1/b, Asy1;9)N (qus
(a1,bq,qAs; q)N ay
On the other hand the polynomial Ry, (x;q) transforms to

N
) p(X;alv"'aas-‘rlabaN;Q)' (218)

Rn((N_:UsaN_xs—lw"7N_xl);(ASQQN)ilaasyas—lw"7a27bQ>as+1q717N;q)? (219)

which, since (2.6) is not invariant under (2.17), gives a second family of multivariable orthogonal

g-Racah polynomials. By replacing ni by ng_ry1 for k = 1,..., s, setting N} = H n; and using
j=k

(2.9) we obtain that the polynomials

Rn(x; Q) = Rn(x; agy. .. 7as+17b N; q)
=70, (N = N3 — 215 A1¢*™ 7V a1, 6,62 "N Jay, N — N3 q)
S
$ T rae (N = Ny — w3 Apa @™V 7 Ay apg ™, gNin NI AN — N — 13 )
k=2
(2.20)

are a g-extension of Tratnik’s [24, (2.12)] second multivariable Racah polynomials and that they

satisfy the orthogonality relation
> Ru(x;9) B (%;0)p(%; ¢) = An(0)0n,m (2:21)
for Ns, My < N, where

An(q) = An(ar, ..., as41,b,N;q)
_ (qAs,qbAgs /a1 )N ( ay )N

(a1/b,asy1;9)N qbAs
X (bAsr1q™ T Ja1,bq N Jar, Aciaq™ a7V q) N

(2,43 @)ny (Ast1/a15 @) Ny 4Nz (1 — DAs i1 /ar)

(bAs+1/ar; @) ny+n;y (1 = bAs1g?MNi ar)
l—Il @ k15 Ongesr (Ast1 [ Aptrs Q) vy, vz, (L= Asi1/qAr)
Pt (Ast1/a4k; O)n;,, +np,, (1= Agpr1d® 01 /qAy)

3. Some limit cases of (2.9) and (2.21)

(2.22)

The multivariable g-Racah polynomials in (2.6) and (2.20) contain as limit cases Tratnik’s [24] sys-

tems of multivariable Racah, Hahn, dual Hahn, Krawtchouk, Meixner, and Charlier polynomials.
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Here we will derive limit cases of the orthogonality relations (2.9) and (2.21) containing multivari-
able ¢-Hahn, dual ¢-Hahn, ¢-Krawtchouk, g-Meixner, and g-Charlier polynomials. We start with
the g-analogue of the dual Hahn polynomials defined by

dn(z5b,¢,N;q) = lin%)rn(fﬂ;a,b, ¢,N;q)

= (bcq7q_N;q)n(qN/C)n/2 302 [q n’bgqi]’fzqu N;qu (3.1)
forn=0,1,..., N, and let
Dn(x;q) = Du(x;a1, ..., 0541, N;q)
= gii%Rn(x;al,...,a5+1,b7N;q)
s
= ] dne(@x = Noc1;angaq™", Apg™ N gy — NiL15q) (32)
k=1

where Ny < N and z411 = N. Then, by taking the b — 0 limit of (2.9) we get the orthogonality

relation

> " Da(x;9)Din(x;9)pp(%;9) = Ap(1;¢)0n m (3.3)
for Ns, My < N, were

pp(%;q) = pp(x;a1, ..., 0541, N3 q)
__(@0AGON (9 0ar (v ()

(as+1, As+15ON (€5 D
y ﬁ (k413 Dargr —on (At 1 Dy o (1 — Apg®r) (3.4)
(Cﬁ Q)xk+1—mk (qu§ Q)xk+1+mk (1 - Ak) koo

k=1
Ap(n;q) = Ap(niai,...,as1,N5q)
. N _—N.

— (qu7Q)N(As+1q ,q aq)NS (_qAS)_qu(g)

(Gs+1; Q)N

s
X H(Qa ak+1;Q)nka (35)
k=1

and the summation in (3.3) is over the same region as in (2.13).
On the other hand, as b — 0 the orthogonality relation (2.21) approaches the limit
> Tu(x;9) T (x5 ) pr (%3 ¢) = Ar(0; ¢)6,m (3.6)
for Ny, My < N, where )
Ta(x;q) = Ta(xsa1,...,as+1,N;q)

=dp, (N = N3 —21; Agp 1~ N2 71 gN2 "N Jay N — N33 q)
qN;:Jrl—N—a?k_l

S
A * a
* L 4s+1 oNny -1 Yk
X Hrnk(N_Nk—l—l_xk? A q kt1 y T A
k=2 k q k

7N - N]j;+1 —wk—1§Q)7

(3.7)



pr(X;q) = pp(x;¢q) is the same weight function as in (3.4), and

)\T(nﬂ q) = )‘T(n7 a, .. '7a’s+17N; Q)

. N
— w(_qu)_Nq_(Z)
(as-i-la Q)N
x (A s+1q ;Q)N; (4 @y (Ast1/a1; @) Ny 4N

s—

| :1

(As+1/94k39) ;+1+N;+2(1—As+1q2N’:+1/qu)

If we multiply (2.9) b

IT () ™ () ™
k=1 a1

and take the limit b — oo, we obtain the limiting relation
Z Dy ( ;q)pp+ (X, q) = Ap= (105 ¢)0n,m
for Ns, My < N, where

Dy (x;q) = Dy (x;a1,. .., 6541, N3 q)
S
= H di (wp — Nip—15 a1 Apg™ V1 2 — Ni_13q)
with

d;(xz;b,¢,N;q) = lim (aq) "rp(z;a,b,¢,N;q)
—-n —T r—N
— n n n ) 70 n
= (bea, ¢ N5 0)u(~1)"q(2) (" /&) /2 50 | bgq q,zqv ¢, bg"
forn=0,1,..., N,

pp+(X;q) = pp=(X;a1,...,as41, N;q)
(¢,9As; )N (a1;q)ay
(541, At 50N (G Qs
o ﬁ (k113 Dapsr -2 (Akt15 Qs+ (1 — Akq%k)a_zk
(G De e @A D (L= A) 8

Canyrig(3)

and

>\D (n7 ) )\D*(n ala"‘7a$+17N;q)
_ (dAs;g)n

N
2L (— as+1)Nq(2)Aﬁf1qNs(Ns+”
(aS-Ha )
— — —Ng—Np_
X H(Q7ak+17 )nk(Aquk_1+l) 2nquk_1 Nkak,+1k k 1'
k=1

(@ k41 Dy (Asi1 [ Arr 1 Oy 4y, , (1= Asia /qAr)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Note that pp-(x;¢9) = (a1/q)™") q(zZI) pp(x;q) and that D} (x;q) is not a constant (independent

of x) multiple of Dy(x;¢). Similarly, by inverting the base ¢ in the orthogonality relation (3.9) it

follows that (3.9) is equivalent to (3.3).



To obtain g-analogues of the multivariable Hahn polynomials in Karlin and McGregor [14] and
in Tratnik [24], multiply (2.9) by aiVS, take the limit a; — 0, replace b by a; and ap by gay for
k=23,...,5s+ 1, and make the change of variables y; = x1, yr = v — xx_1 for k =2,3,...,s.

This yields the multivariable ¢-Hahn polynomial orthogonality relation
> Haly; @) Hu(y; 0)pr(y; @) = Ar (03 ¢)0n.m (3.14)
y

for Ny, My < N, where

HH(X7 Q) - Hn(x; A, ... ,CLS+1,N; Q)

s

= H P, (Yie = Nig—1; Ap®M 0= g0 Vierr — Ni_139) (3.15)
k=1

with the single-variable ¢g-Hahn polynomials defined by

hn (w50, b, N3 q) = lim (cg™™)"?rn (230, b, ¢, N1 )
-n abanrl

N q q "
= (aq,q" "1 q)n 3¢2[ ’aq q_N’ ;q,q] (3.16)

forn=0,1,...,N,

pu(y:q) = pu(y;ai,...,as41,N;q)

(Y;a)v. v, 771 (993 D)y,

= ) (qar) ™", (3.17)
T (@)

(q_N/as+1; Q)Ys

AH(naq) = AH(n;ah .. ‘7as+17N;q)
_ Asnethgnan (o), (A qNS+s)),N(_1)NSq(J\2rS)
(qas+1; Q)N ®
S

H (¢, qn 115 Dy, (Aeq"; Q)N 4N, (1 — A1) (A qk+2Nk—l>nk
(Ap10"; Ny Ny (1 — ApprgFH20%) ’

. (3.18)
k=1

k
YVi=> yjforl1<k<ssothat Vi =y; =2y and o =Y, for 1 <k <s, Ys4; =241 = N, and
j=1
the summation is over all y with y = 0,1,..., and Y; < N. Also see Dunkl [4] and Rosengren [18].

Clearly the summation region in (3.14) and the weight function in (3.17) are invariant under any

permutation of the labels (1,2,...,s). If we set ys4+1 = N — Y, then they are also invariant (apart
from the renormalization of the weight function) under any permutation of the labels (1,2,...,s+1);
i.e., under any simultaneous permutation of (a1, as,...,as+1) and (y1,y2,...,Ys+1). Since the

polynomials in (3.15) are generally not invariant under these permutations, this generates distinct
systems satisfying the orthogonality relation (3.14) via these permutations, which are g-extensions

of those mentioned at the top of page 2341 in Tratnik [24].
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Next, consider the ¢-Krawtchouk polynomials defined by
kn (230, N3 q) = lim (aq)™"hy(z;a,b, N;q)
= (g7 V:9)n(~1)"q(2) 26, (q’”, a % q N5, bq"“) (3.19)

forn=0,1,...,N. In view of (3.19), if we multiply (3.14) by al_ZNS, let a1 — oo, and then replace
ar by ap_q for 2 < k < s+ 1, we obtain the multivariable ¢-Krawtchouk orthogonality relation

ZK ;) Km(y; 0)px (¥ 4) = A (105,0)0n,m (3-20)
for Ns, My < N, where

Kn(YaQ):K (Y;alw"aasaN;(D

= Hk Y N] lva’]aY]+1 Nj*l;q)7 (321)

pr(y;q) = pr(y;ai,...,as, N;q)

— Y1
- (¢; )(q( _’]\?/):1/: q)y. (_1)y1q_(2)as_ys
X H qag 17 yJ aj—l)iyj, (3'22)

Ak (n;q) = Ag(n;aq,...,as,N;q)
-N. N N+N,
V9w, SN . . .
((Qa Q))Jifv (Aar @) TN (Ag® TN N ( 1)Nq( 2)+(72)

H ¢, qaj; @), (Aj_yq? T2 )T g TN 2N (3.23)

and the summation is over the same region as in (3.14). This orthogonality relation can also be

derived by starting with the a; — 0 limit case of (3.14).
Now consider the ¢g-Meixner polynomials defined by
My (g~ a,¢:9) = 2¢1 (q’“,q*””;aq;q, —qn“/C) (3.24)

for n = 0,1, ..., which satisfy the orthogonality relation

> —x —x aq, q x x o
> Mg "a,050)Mu(qg "5 a5 q)(q(_acq),q)c q2)

:(—C;q)oo(% —4/GDn
 (—acg; 9)oo(ag; q)n - (3.25)

See [9, Ex. 7.12] and [15, §3.13].
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To find multivariable orthogonal ¢-Meixner polynomials we, formally, replace the upper limit
of summation N for the sum over x, in (2.9) by co and replace ¢~V by an arbitrary number £,
say. Then, from (2.16), the factor

(0, 9As; )N (54159 N—2, (Asi1; @) N1,
(@s+1, Ast130)N (6 @) N-2, (@As; Q)N 12,

@M, A1dY5 ), (¢/an1)™
(@ N asi1, AgN T q)e, T

gets replaced by
(B, As+1/B5 @)z,

(Bq/ass1,qAs/B;q) . (q/as+1)™s,

and, from (2.14), the factor

(qu,qus+1/a1;q)N< ay )N

(ast1,a01/b;q)n  \qbA,
(qAs, a1V /bAsi159)N
(¢t=N/asy1,a1/b;q) N

gets replaced by
(g4s,a18/bAs11,q/as+1,a1/08;9) o

(Bq/ast1,a1/b,qAs /B, a1/bAst1;q) s
via the identity (a;q¢)n = (@;¢)00/(aq™;q) in [9, (I.5)]. Hence, by multiplying both sides of

(2.9) by (bq/a}/Z)_NS_MS, taking the limits b — oo and a3 — 0, and replacing ay by ag_; for
2 <k <s+ 1, we are led to the limit case

> Z LY Ma(%50) M (x5 0)paa (x5 )

rxs=0xs_1=0 x1=0

= Am(n;¢)dnm (3.26)
where

Mn(x;q) = Mu(x501,. .., as, 55 q)
s—1
n
— H(qu—l—Ik-H;q)nk(_l)nkq( Qk)-i-nka—lAZi/lQ
k=1
X My, (qNr=177k; Vo1 m Tk =1 g fay: q)]

Ns
2

X (BN 11 @), (—1)e g2 e Nems g7 2

X My, (g% Bg™o1 7Y —q/ag; q), (3.27)

pm(X;q) = pm(x;ai, ..., as, B35 q)

(8; @)a. ( q )xs(—l)“q(’g)

(gB/as; @)z, \as—1as/  (¢;q)a,
s—1 .
% H (CLMQ)J/’;ﬁLlfzk a,;flf (328)

k=1 (Q) Q)Ik+1—wk
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with ag = 1, and

)‘M(n; Q) = )‘M(na ag, .. 'aasaﬁ; Q)
(¢/as; @)oo Ns(Ns—1) 4N
= M D0 (5. )y oo 41
(gB/as; Q)oo( )
S
< [ (a. ar; Qg N N (3.29)
k=1
This orthogonality relation can be verified by starting with the g-Meixner orthogonality relation
(3.25) and proceeding as in the derivation of (2.9).
The 8 — 0 limit of (3.26) gives the following multivariable extension of the g-Charlier polyno-

mial orthogonality

Z Z ZC X; q)Cm (X; ¢)pc (X; q)

xs=0xs_1=0 r1=0

= Ac(n;¢)0nm, (3.30)
where

Cn(x;q9) = Ca(x;0a1,...,0as:q)
s—1
_ H (qu71*a:k+1 : Q)nk (_l)nkq(n;)Jrnkaf1 A:i/f
k=1
X Mnk (qufliwk ; quflikail? _Q/akB Q)]

x (—1)neq(5)FnaNems gns/2

X Cn, (17T —q /a3 q), (3.31)

pe(x;q) = pe(x;ar, . .. as;q)

q )xs - m - akv $k+1 Tk —xp
= - 2a, "k, 3.32
(L |:|1 v o (332

(q’q q Thk+1— Tk

Ae(n;q) = Ae(n;ag,. .. asq)

S
= (a/as; @) ooq™ N VAN T] (0, ars @)y, ™~ gNrmr =N, (3.33)
k=1

with ag = 1 and the ¢-Charlier polynomial defined by
en(q™*;a5q) = lim M (q™*; 5, ;)
= 2¢1(¢", 4" ";0;¢,—¢"* /a). (3.34)

See [9, Ex. 7.13] and [15, §3.23] for the orthogonality relation and other properties of the ¢g-Charlier
polynomials. Of course (3.3), (3.6), (3.9), (3.14), (3.20), and (3.30) can also be derived directly

from their single variable special cases by proceeding as in the derivation of (2.9) and (2.21).
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Other discrete multivariable extensions of the Racah and Hahn polynomials are considered in

3], [5], [13], [17], [18], [20], [22] and [26]. For some related results see, e.g., [6], [7], [8], [9], [12],

[16] and [19]. In view of the nonnegativity results for the linearization coefficients and for kernels

containing products of g-Racah polynomials in [7] and [8] and the resulting convolution structure

and positive summability methods, it would be of interest to see if any of these nonnegativity results

can be extended to some of the multivariable orthogonal polynomials considered in this paper.
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