Fractional integration for Laguerre expansions

George Gasper ${ }^{1}$, Krzysztof Stempak ${ }^{2}$ and Walter Trebels ${ }^{3}$

(To appear in Methods and Applications of Analysis)

Key words. Fractional integration, multiplier conditions, Laguerre polynomials

AMS(MOS) subject classifications. 33C45, 42A45, 42C10

1 Introduction

The aim of this note is to provide a fractional integration theorem in the framework of Laguerre expansions. The method of proof consists of establishing an asymptotic estimate for the involved kernel and then applying a method of Hedberg [5]. We combine this result with sufficient (p, p) multiplier criteria of Stempak and Trebels [10]. The resulting sufficient (p, q) multiplier criteria are comparable with necessary ones of Gasper and Trebels [3].
Our notation is essentially that in [10]. Thus we consider the Lebesgue spaces

$$
L_{v(\gamma)}^{p}=\left\{f:\|f\|_{L_{v(\gamma)}^{p}}=\left(\int_{0}^{\infty}|f(x)|^{p} x^{\gamma} d x\right)^{1 / p}<\infty\right\}, \quad 1 \leq p<\infty, \quad \gamma>-1
$$

and define the Laguerre function system $\left\{l_{k}^{\alpha}\right\}$ by

$$
l_{k}^{\alpha}(x)=(k!/ \Gamma(k+\alpha+1))^{1 / 2} e^{-x / 2} L_{k}^{\alpha}(x), \quad \alpha>-1, \quad k \in \mathbf{N}_{0}
$$

This system is an orthonormal basis in $L^{2}\left(\mathbf{R}_{+}, x^{\alpha} d x\right)$ and for $\gamma<p(\alpha+1)-1$ we can associate to any $f \in L_{v(\gamma)}^{p}$ the Laguerre series

$$
f(x) \sim \sum_{k=0}^{\infty} a_{k} l_{k}^{\alpha}(x), \quad a_{k}=\int_{0}^{\infty} f(x) l_{k}^{\alpha}(x) x^{\alpha} d x
$$

It is convenient to introduce the vector space

$$
E=\left\{f(x)=p(x) e^{-x / 2}: 0 \leq x<\infty, \quad p(x) \text { a polynomial }\right\}
$$

[^0]which is dense in $L_{v(\gamma)}^{p}$. We note that $f \in E$ has only finitely many non-zero FourierLaguerre coefficients. Analogous to the definition of the Hardy and Littlewood fractional integral operator for Fourier series (see [12, Chap. XII, Sec. 8], we define a fractional integral operator $I_{\sigma}, \sigma>0$, for Laguerre expansions by
$$
I_{\sigma} f(x)=\sum_{k=0}^{\infty}(k+1)^{-\sigma} a_{k} l_{k}^{\alpha}(x), \quad f \in E
$$

Observing that the l_{k}^{α} are eigenfunctions with eigenvalues λ_{k} of the differential operator

$$
L=-\left(x \frac{d^{2}}{d x^{2}}+(\alpha+1) \frac{d}{d x}-\frac{x}{4}\right), \quad \lambda_{k}=k+(\alpha+1) / 2
$$

(see [11, (5.1.2)]) one realizes that I_{1} is an integral operator essentially inverse to L (see the following Remark 2). As we will see in Section 2 the fractional integral $I_{\sigma} f$ can be interpreted as a twisted convolution of f with a function

$$
\begin{equation*}
g_{\sigma}(x) \sim \Gamma(\alpha+1) \sum_{k=0}^{\infty}(k+1)^{-\sigma} L_{k}^{\alpha}(x) e^{-x / 2} . \tag{1}
\end{equation*}
$$

From Theorem 3.1 in [3, II] it easily follows that $g_{\sigma} \in L_{v(\gamma)}^{1}$ when $\alpha-\gamma<\sigma$, so that, by the convolution theorem of Görlich and Markett [4], I_{σ} extends to a bounded operator from $L_{v(\gamma)}^{p}$ to $L_{v(\gamma)}^{p}$ when $0 \leq \alpha p / 2 \leq \gamma \leq \alpha, 1 \leq p \leq \infty$. Our main result is

Theorem 1.1 Let $\alpha \geq 0,1<p \leq q<\infty$. Assume further that $0<\sigma<\alpha+1$, $a<(\alpha+1) / p^{\prime}, b<(\alpha+1) / q, a+b \geq 0$. Then

$$
\left\|I_{\sigma} f\right\|_{L_{v(\alpha-b q)}^{q}} \leq C\|f\|_{L_{v(\alpha+a p)}^{p}}, \quad \frac{1}{q}=\frac{1}{p}-\frac{\sigma-a-b}{\alpha+1}
$$

Remarks. 1) Observe that the upper bounds for a and b imply lower bounds for b and a, respectively.
2) By the above it is clear that the sequence $\left\{(k+1)^{-\sigma}\right\}$ which generates the fractional integral can be replaced by any sequence $\left\{\Omega_{\sigma}(k)\right\}$ satisfying

$$
\Omega_{\sigma}(k)=\sum_{j=0}^{J} c_{j}(k+1)^{-\sigma-j}+O\left((k+1)^{-\sigma-J}\right)
$$

for sufficiently large J, say $J \geq \alpha+2$, thus in particular obtaining the same result for the sequence $\{\Gamma(k+1) / \Gamma(\sigma+k+1)\}-$ see $[7]$.
3) A weaker version of Theorem 1.1 (e.g. in the case $a=b=0$) can easily be deduced by the following argument. By a slight modification of the proof of Theorem 3.1 in $[3, \mathrm{II}]$ we have:

Let $\alpha>-1$ and $N \in \mathbf{N}_{0}, N>(2 \alpha+2)(1 / r-1 / 2)-1 / 3$. If $\left\{f_{k}\right\}$ is a bounded sequence with $\lim _{k \rightarrow \infty} f_{k}=0$ and

$$
\sum_{k=0}^{\infty}(k+1)^{N+(\alpha+1) / r^{\prime}}\left|\Delta^{N+1} f_{k}\right| \leq K_{r}(f)<\infty, \quad 1 \leq r<\infty
$$

then there exists a function $f \in L_{v(\alpha)}^{r}$ with

$$
\|f\|_{L_{v(\alpha)}^{r}} \leq C K_{r}(f), \quad f(x) \sim \sum_{k=0}^{\infty} f_{k} L_{k}^{\alpha}(x) e^{-x / 2}
$$

This applied to the sequence $\left\{(k+1)^{-\sigma}\right\}$ gives, by Young's inequality (see [4]),

$$
\left\|I_{\sigma} f\right\|_{L_{v(\alpha)}^{q}} \leq C\|f\|_{L_{v(\alpha)}^{p}}, \quad \frac{1}{q}>\frac{1}{p}-\frac{\sigma}{\alpha+1},
$$

where $\alpha \geq 0, \sigma>0$ and $1 \leq p, q \leq \infty$.
Next we indicate how Theorem 1.1 can be used to gain some insight into the structure of $M^{p, q}$-Laguerre multipliers. For the sake of simplicity let us restrict ourselves to the case $\gamma=\alpha$. Consider a sequence $m=\left\{m_{k}\right\}$ of numbers and associate to m the operator

$$
T_{m} f(x)=\sum_{k=0}^{\infty} m_{k} a_{k} l_{k}^{\alpha}(x), \quad f \in E .
$$

The sequence m is called a bounded (p, q)-multiplier, notation $m \in M_{\alpha, \alpha}^{p, q}$, if

$$
\|m\|_{M_{\alpha, \alpha}^{p, q}}:=\inf \left\{C:\left\|T_{m} f\right\|_{L_{v(\alpha)}^{q}} \leq C\|f\|_{L_{v(\alpha)}^{p}} \quad \text { for all } f \in E\right\}
$$

is finite. If $p \leq 2 \leq q$, then sufficient conditions follow at once in the following way: observe that $M_{\alpha, \alpha}^{2,2}=l^{\infty}$, choose $\sigma_{0}, \sigma_{1} \geq 0$ such that $I_{\sigma_{0}}: L^{p} \rightarrow L^{2}, I_{\sigma_{1}}: L^{2} \rightarrow$ $L^{q}, \sigma_{0}+\sigma_{1}=\sigma$, and hence

$$
\|m\|_{M_{\alpha, \alpha}^{p, q}} \leq\left\|k^{-\sigma_{0}}\right\|_{M_{\alpha, \alpha}^{p, 2}}\left\|\left\{k^{\sigma} m_{k}\right\}\right\|_{M_{\alpha, \alpha}^{2,2}}\left\|k^{-\sigma_{1}}\right\|_{M_{\alpha, \alpha}^{2, q}} ;
$$

in particular, $m \in M_{\alpha, \alpha}^{p, q}$ when $\left\{k^{\sigma} m_{k}\right\} \in l^{\infty}$. Thus when $1<p \leq 2 \leq q<\infty$, and σ is as in Theorem 1.1, $\left\{(-1)^{k}(k+1)^{-\sigma}\right\} \in M_{\alpha, \alpha}^{p, q}$ generates a bounded operator which does not fall under the scope of the above introduced fractional integral operators. To formulate a Corollary based on a combination of Theorem 1.1 and the multiplier result in [10] we need the notion of a difference operator Δ^{s} of fractional order s given by

$$
\Delta^{s} m_{k}=\sum_{j=0}^{\infty} A_{j}^{-s-1} m_{k+j}, \quad A_{j}^{t}=\frac{\Gamma(j+t+1)}{j!\Gamma(t+1)}, \quad t \in \mathbf{R}
$$

whenever the sum converges. In view of the remark concerning the case $p<2<q$ and on account of duality we may restrict ourselves to the case $1<p<q<2$.

Corollary 1.2 If $\alpha \geq 0,1<p<q<2$, and $s>\max \{(2 \alpha+2)(1 / q-1 / 2), 1\}$ then, for some constant C independent of the sequence $\left\{m_{k}\right\}$, there holds

$$
\left\|\left\{m_{k}\right\}\right\|_{M_{\alpha, \alpha}^{p, q}}^{2} \leq C\left(\left\|\left\{k^{\sigma} m_{k}\right\}\right\|_{\infty}^{2}+\sup _{N} \sum_{k=N}^{2 N}\left|(k+1)^{s+\sigma} \Delta^{s} m_{k}\right|^{2}(k+1)^{-1}\right) .
$$

The proof follows as in [2]. The result itself should be compared with the corresponding necessary condition in $[3, I]$ which also shows that $\left\{(-1)^{k}(k+1)^{-\sigma}\right\} \notin M_{\alpha, \alpha}^{p, q}$ provided $1<p<q<2$ and α is sufficiently large.

The plan of the paper is as follows. In Section 2 we derive an asymptotic estimate of the function g_{σ} defined above by (1). Then the twisted generalized convolution is used to dominate $I_{\sigma} f$ by a generalized Euclidean convolution of g_{σ} with f. The latter's mapping behavior is discussed by a method of Hedberg [5] which uses maximal functions; thus giving Theorem 1.1 in the standard weight case $a=b=0$. In Section 3 we extend this result to some power weights, modifying an argument in Stein and Weiss [8].

2 Proof of the standard weight case.

We start by deriving the required asymptotic estimate and showing
Lemma 2.1 Let $\alpha>-1$. Then, for $x>0$ and $0<\sigma<\alpha+1$, there holds

$$
\begin{equation*}
\left|g_{\sigma}(x)\right| \leq C x^{\sigma-\alpha-1} \tag{2}
\end{equation*}
$$

Proof. First note that by subordination (see [3, I], p. 1234) there holds for $N>$ $\alpha+2, N \in \mathbf{N}$,

$$
g_{\sigma}(x)=C \sum_{k=0}^{\infty}\left(\Delta^{N}(k+1)^{-\sigma}\right) L_{k}^{\alpha+N}(x) e^{-x / 2} .
$$

Then the assertion (2) follows after it is proved that

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k+1)^{-\sigma-N}\left|x^{\alpha+1-\sigma} L_{k}^{\alpha+N}(x) e^{-x / 2}\right| \leq C \tag{3}
\end{equation*}
$$

uniformly in $x>0$. With the notation

$$
\mathcal{L}_{k}^{\alpha}(x)=(k!/ \Gamma(k+\alpha+1))^{1 / 2} x^{\alpha / 2} e^{-x / 2} L_{k}^{\alpha}(x), \quad k \in \mathbf{N}_{0} .
$$

this is equivalent to

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k+1)^{(\alpha-N) / 2-\sigma}\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C x^{\sigma+(N-\alpha-2) / 2} \tag{4}
\end{equation*}
$$

uniformly in $0<x<\infty$. We will make use of the pointwise estimates for the Laguerre functions in [1, Sec. 2]:

$$
\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C\left\{\begin{array}{lll}
(x(k+1))^{(\alpha+N) / 2} & \text { if } & 0 \leq x \leq c /(k+1) \tag{5}\\
(x(k+1))^{-1 / 4} & \text { if } \quad c /(k+1) \leq x \leq d(k+1)
\end{array}\right.
$$

for fixed positive constants c and d. These and two further estimates in $[6,(2.5)]$ imply that

$$
\begin{equation*}
\sup _{x>0}\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C, \quad k \in \mathbf{N}_{0} \tag{6}
\end{equation*}
$$

and so it is obvious that (6) implies (4) for $x \geq 1$.
Therefore, decomposing dyadically the interval $(0,1)$ it suffices to check that

$$
\sum_{k=0}^{\infty}(k+1)^{(\alpha-N) / 2-\sigma}\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C\left(2^{j}\right)^{\sigma+(N-\alpha-2) / 2}
$$

provided $2^{j} \leq x \leq 2^{j+1}, j<0$. Using the first line of (5) we get

$$
\sum_{k=0}^{2^{-j}}(k+1)^{(\alpha-N) / 2-\sigma}\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C\left(2^{j}\right)^{(\alpha+N) / 2} \sum_{k=0}^{2^{-j}}(k+1)^{\alpha-\sigma} \leq C\left(2^{j}\right)^{\sigma+(N-\alpha-2) / 2}
$$

while the second line of (5) gives

$$
\sum_{k=2^{-j}}^{\infty} k^{(\alpha-N) / 2-\sigma}\left|\mathcal{L}_{k}^{\alpha+N}(x)\right| \leq C 2^{-j / 4} \sum_{k=2^{-j}}^{\infty} k^{(\alpha-N) / 2-\sigma-1 / 4} \leq C\left(2^{j}\right)^{\sigma+(N-\alpha-2) / 2}
$$

This completes the proof of Lemma 2.1.
As already mentioned we will apply Hedberg's method which involves maximal functions. To make use of the corresponding results in [9] we switch to the system

$$
\psi_{k}^{\alpha}(x)=(2 k!/ \Gamma(k+\alpha+1))^{1 / 2} e^{-x^{2} / 2} L_{k}^{\alpha}\left(x^{2}\right), \quad k \in \mathbf{N}_{0}
$$

which is obviously orthonormal on $L^{2}\left(\mathbf{R}_{+}, d \mu_{\alpha}\right), d \mu_{\alpha}(x)=x^{2 \alpha+1} d x, \alpha>-1$. For the sake of simplicity we write the norm on $L^{p}\left(\mathbf{R}_{+}, d \mu_{\alpha}\right)$ as

$$
\|F\|_{p}=\left(\int_{0}^{\infty}|F(x)|^{p} d \mu_{\alpha}(x)\right)^{1 / p}
$$

We adopt the notion of the twisted generalized convolution on $L^{1}\left(\mathbf{R}_{+}, d \mu_{\alpha}\right)$ from [9]

$$
F \times G(x)=\int_{0}^{\infty} \tau_{x} F(y) G(y) d \mu_{\alpha}(y)
$$

where the twisted generalized translation operator τ_{x} is given by

$$
\tau_{x} F(y)=\frac{\Gamma(\alpha+1)}{\pi^{1 / 2} \Gamma(\alpha+1 / 2)} \int_{0}^{\pi} F\left((x, y)_{\theta}\right) \mathcal{J}_{\alpha-1 / 2}(x y \sin \theta)(\sin \theta)^{2 \alpha} d \theta
$$

$\mathcal{J}_{\beta}(x)=\Gamma(\beta+1) J_{\beta}(x) /(x / 2)^{\beta}, J_{\beta}$ denoting the Bessel function of order β, and

$$
(x, y)_{\theta}=\left(x^{2}+y^{2}-2 x y \cos \theta\right)^{1 / 2} .
$$

With respect to the system $\left\{\psi_{k}^{\alpha}\right\}$ this convolution has the following transform property: if $F \sim \sum c_{k} \psi_{k}^{\alpha}$ and $F \times G \sim \sum c_{k} d_{k} \psi_{k}^{\alpha}$, then $G(x) \sim \Gamma(\alpha+1) \sum d_{k} L_{k}^{\alpha}\left(x^{2}\right) e^{-x^{2} / 2}$. If we set $f\left(y^{2}\right)=F(y), g_{\sigma}\left(y^{2}\right)=G_{\sigma}(y)$, we see that

$$
\left|I_{\sigma} f\left(x^{2}\right)\right|=\left|F \times G_{\sigma}(x)\right| .
$$

Apart from Lemma 2.1 the proof of Theorem 1.1 will be based on the fact that for $\alpha \geq 0$ and suitable F and G

$$
|F \times G| \leq|F| *|G|,
$$

which follows at once from the definition of the generalized Euclidean *-convolution

$$
F * G(x)=\int_{0}^{\infty} \tau_{x}^{E} F(y) G(y) d \mu_{\alpha}(y)
$$

with associated generalized Euclidean translation

$$
\tau_{x}^{E} F(y)=\int_{0}^{\pi} F\left((x, y)_{\theta}\right) d \nu_{\alpha}(\theta), \quad d \nu_{\alpha}(\theta)=\frac{\Gamma(\alpha+1)}{\pi^{1 / 2} \Gamma(\alpha+1 / 2)}(\sin \theta)^{2 \alpha} d \theta .
$$

Therefore we restrict ourselves to fractional integrals defined via the generalized Euclidean convolution.

Theorem 2.2 Let $1<p<q<\infty, \alpha>-1 / 2, K_{\sigma}(x)=x^{2(\sigma-\alpha-1)}$. Then

$$
\left\|F * K_{\sigma}\right\|_{q} \leq C\|F\|_{p}, \quad \frac{1}{q}=\frac{1}{p}-\frac{\sigma}{\alpha+1} .
$$

By the above it is clear that Theorem 1.1 for the case $a=b=0$ follows from Theorem 2.2.

Proof. Following Hedberg [5] we want to estimate $F * K_{\sigma}(x)$ pointwise by a suitable maximal function which in this setting turns out to be (see Stempak [9, p. 138])

$$
F^{*}(x)=\sup _{\varepsilon>0} \varepsilon^{-(2 \alpha+2)} \int_{0}^{\varepsilon} \tau_{x}^{E}(|F|)(y) d \mu_{\alpha}(y)
$$

with the usual boundedness property $\left\|F^{*}\right\|_{r} \leq\left. C| | F\right|_{r}, \quad 1<r \leq \infty$. Now there holds

$$
\left|F * K_{\sigma}(x)\right| \leq C\left(\int_{0}^{\delta}+\int_{\delta}^{\infty}\right) \tau_{x}^{E}(|F|)(y) y^{2(\sigma-\alpha-1)} d \mu_{\alpha}(y)=J_{1}+J_{2}
$$

where $\delta>0$ will be chosen later appropriately. Clearly,

$$
\begin{aligned}
J_{1} & =\sum_{k=0}^{\infty} \int_{2^{-k-1} \delta}^{2^{-k} \delta} \ldots \leq C \sum_{k=0}^{\infty}\left(2^{-k} \delta\right)^{2 \sigma}\left(2^{-k} \delta\right)^{-2 \alpha-2} \int_{2^{-k-1} \delta}^{2^{-k} \delta} \tau_{x}^{E}(|F|)(s) s^{2 \alpha+1} d s \\
& \leq C \delta^{2 \sigma} \sum_{k=0}^{\infty} 2^{-k 2 \sigma}\left(2^{-k} \delta\right)^{-2 \alpha-2} \int_{0}^{\delta 2^{-k}} \tau_{x}^{E}(|F|)(s) s^{2 \alpha+1} d s \leq C \delta^{2 \sigma} F^{*}(x)
\end{aligned}
$$

On the other hand, by Hölder's inequality,

$$
\begin{gathered}
J_{2}=\int_{\delta}^{\infty} \tau_{x}^{E}(|F|)(s) s^{2(\sigma-\alpha-1)} s^{2 \alpha+1} d s \leq\left\|\tau_{x}^{E}(|F|)\right\|_{p}\left(\int_{\delta}^{\infty} s^{2(\sigma-\alpha-1) p^{\prime}} s^{2 \alpha+1} d s\right)^{1 / p^{\prime}} \\
\leq C \delta^{2 \sigma-(2 \alpha+2) / p}\|F\|_{p}
\end{gathered}
$$

since τ_{x}^{E} are contractions on $L^{p}\left(\mathbf{R}_{+}, d \mu_{\alpha}\right)$. Hence

$$
\left|F * K_{\sigma}(x)\right| \leq C\left(\delta^{2 \sigma} F^{*}(x)+\delta^{2 \sigma-(2 \alpha+2) / p}| | F \|_{p}\right) .
$$

Choosing $\delta=\left(F^{*}(x) /\|F\|_{p}\right)^{-p /(2 \alpha+2)}$ (where $\|F\|_{p} \neq 0$ is assumed) we obtain

$$
\left|F * K_{\sigma}(x)\right| \leq C F^{*}(x)^{1-\sigma p /(\alpha+1)}\|F\|_{p}^{\sigma p /(\alpha+1)}
$$

and then $\left\|F * K_{\sigma}\right\|_{q} \leq C\|F\|_{p}$ due to the inequality for the maximal function with $r=q(1-\sigma p /(\alpha+1))=p>1$. This finishes the proof of Theorem 2.2.

3 Extension to power weights

The proof of Theorem 1.1 in the general case follows along the lines in Section 2 from

Theorem 3.1 Let $\alpha>-1 / 2,0<\sigma<\alpha+1$ and $a<(\alpha+1) / p^{\prime}, b<(\alpha+1) / q$, with $a+b \geq 0$. If $1<p \leq q<\infty$, then

$$
\left\|K_{\sigma} * F(x) x^{-2 b}\right\|_{q} \leq C\left\|F(x) x^{2 a}\right\|_{p}, \quad \frac{1}{q}=\frac{1}{p}-\frac{\sigma-a-b}{\alpha+1} .
$$

Proof. An equivalent version of the inequality above is

$$
\left(\int_{0}^{\infty}|S f(x)|^{q} d \mu_{\alpha}(x)\right)^{1 / q} \leq C\left(\int_{0}^{\infty}|f(x)|^{p} d \mu_{\alpha}(x)\right)^{1 / p}
$$

where $f(x)=x^{2 a} F(x), S f(x)=\int_{0}^{\infty} K(x, y) f(y) d \mu_{\alpha}(y)$ and

$$
K(x, y)=x^{-2 b}\left(\int_{0}^{\pi}(x, y)_{\theta}^{2(\sigma-\alpha-1)} d \nu_{\alpha}(\theta)\right) y^{-2 a} .
$$

We first consider the case $p=q$. Then $\sigma=a+b$ and, therefore, the kernel $K(x, y)$ is homogeneous of degree $-(2 \alpha+2): K(r x, r y)=r^{-(2 \alpha+2)} K(x, y), r>0$. It now suffices to check that (cf. Section 2 of [10])

$$
\int_{0}^{\infty} K(1, y) y^{-(2 \alpha+2) / p} d \mu_{\alpha}(y)<\infty
$$

We first note that the function $K(1, y)$ has at most an integrable singularity at $y=1$, since for $1 / 2 \leq y \leq 2$ we have

$$
\int_{0}^{\pi} \frac{(\sin \theta)^{2 \alpha} d \theta}{\left((1-y)^{2}+4 y \sin ^{2}(\theta / 2)\right)^{\alpha+1-\sigma}} \leq C\left(1+|1-y|^{\sigma-1}\right) .
$$

To deal with the singularity at 0 we note that for $y<1 / 2$ we have $(1, y)_{\theta} \approx 1$ and therefore $\int_{0}^{\pi}(1, y)_{\theta}^{2(\sigma-\alpha-1)} d \nu_{\alpha}(\theta) \approx 1$ as well. Hence $K(1, y) \leq C y^{-2 a}$ and thus

$$
\int_{0}^{1 / 2} K(1, y) y^{-(2 \alpha+2) / p} d \mu_{\alpha}(y)<\infty, \quad a<(\alpha+1) / p^{\prime}
$$

For $y>2$ we have $(1, y)_{\theta} \approx y, \int_{0}^{\pi}(1, y)_{\theta}^{2(\sigma-\alpha-1)} d \nu_{\alpha}(\theta) \approx y^{2(\sigma-\alpha-1)}$ and hence

$$
\int_{2}^{\infty} K(1, y) y^{-(2 \alpha+2) / p} d \mu_{\alpha}(y)<\infty, \quad b<(\alpha+1) / q
$$

since $\sigma<(\alpha+1) / p$.
Now, consider the case $1<p<q<\infty$. We use still another equivalent version of the inequality to be proved, namely

$$
\int_{0}^{\infty} \int_{0}^{\infty} K(x, y) f(y) g(x) d \mu_{\alpha}(y) d \mu_{\alpha}(x) \leq C\|f\|_{p}\|g\|_{q^{\prime}}
$$

assuming for simplicity that f and g are nonnegative. Writing $\mathbf{R}_{+} \times \mathbf{R}_{+}=D_{1} \cup D_{2} \cup D_{3}$ where

$$
D_{1}=\{y / 2 \leq x \leq 2 y\}, D_{2}=\{2 y<x\}, D_{3}=\{x<y / 2\}
$$

it suffices to check for $i=1,2,3$ that

$$
I_{i}=\iint_{D_{i}} K(x, y) f(y) g(x) d \mu_{\alpha}(y) d \mu_{\alpha}(x) \leq C\|f\|_{p}\|g\|_{q^{\prime}}
$$

Consider I_{1} first. Since $a+b \geq 0$, for $x, y \in D_{1}$ and $\theta \in(0, \pi)$ we have

$$
\left((x, y)_{\theta}\right)^{2(a+b)} \leq C x^{2(a+b)} \leq C x^{2 b} y^{2 a}
$$

so

$$
I_{1} \leq \iint_{D_{1}} \widetilde{K}(x, y) f(y) g(x) d \mu_{\alpha}(y) d \mu_{\alpha}(x)
$$

with $\widetilde{K}(x, y)=\tau_{x}^{E} K_{\sigma-a-b}(y)$. Hence we are reduced to showing that

$$
\int_{0}^{\infty} K_{\sigma-a-b} * f(x) g(x) d \mu_{\alpha}(x) \leq\|f\|_{p}\|g\|_{q^{\prime}},
$$

which is implied by Theorem 2.2.
To estimate I_{2} and I_{3} we need the following lemma.
Lemma 3.2 Let $\alpha>-1$ and $V_{\delta} f(x)=x^{2(\delta-\alpha-1)} \int_{0}^{x} f(y) y^{-2 \delta} d \mu_{\alpha}(y), \delta<(\alpha+1) / p^{\prime}$. Then

$$
\left\|V_{\delta} f\right\|_{p} \leq C| | f\left\|_{p}, \quad\left|V_{\delta} f(x)\right| \leq C x^{-(2 \alpha+2) / p}| | f\right\|_{p}
$$

Proof. We have that $V_{\delta} f(x)=\int_{0}^{\infty} L(x, y) f(y) d \mu_{\alpha}(y)$, where $L(x, y)=x^{2(\delta-\alpha-1)} y^{-2 \delta}$ for $y<x$ and equals 0 otherwise. Clearly L is homogeneous of degree $-(2 \alpha+2)$. Therefore the norm inequality is implied by

$$
\int_{0}^{\infty} L(1, y) y^{-(2 \alpha+2) / p} d \mu_{\alpha}(y)=\int_{0}^{1} y^{-2 \delta-(2 \alpha+2) / p+2 \alpha+1} d y<\infty
$$

which is finite since $\delta<(\alpha+1) / p^{\prime}$. For the pointwise estimate we simply write

$$
\begin{gathered}
\left|V_{\delta} f(x)\right| \leq x^{2(\delta-\alpha-1)} \int_{0}^{x}|f(y)| y^{-2 \delta} d \mu_{\alpha}(y) \\
\leq C x^{2(\delta-\alpha-1)}\left(\int_{0}^{x} y^{-2 \delta p^{\prime}} d \mu_{\alpha}(y)\right)^{1 / p^{\prime}}\|f\|_{p} \leq C x^{-(2 \alpha+2) / p}| | f \|_{p}
\end{gathered}
$$

which finishes the proof of the lemma.
Estimating I_{2}, we note that for $x, y \in D_{2}$ and all $\theta, 0<\theta<\pi$, there holds $x<$ $2(x-y) \leq 2\left((x-y)^{2}+2 x y(1-\cos \theta)\right)^{1 / 2}=2(x, y)_{\theta}$; hence

$$
I_{2} \leq C \int_{0}^{\infty} x^{2(\sigma-\alpha-1-b)} g(x)\left(\int_{0}^{x} f(y) y^{-2 a} d \mu_{\alpha}(y)\right) d \mu_{\alpha}(x)
$$

$$
=C \int_{0}^{\infty} g(x) x^{2(\sigma-a-b)} V_{a} f(x) d \mu_{\alpha}(x) \leq C\|g\|\left\|_{q^{\prime}}\right\| x^{2(\sigma-a-b)} V_{a} f \|_{q} .
$$

It now suffices to estimate the latter L^{q} norm by $\|f\|_{p}$. We have

$$
\int_{0}^{\infty}\left|x^{2(\sigma-a-b)} V_{a} f(x)\right|^{q} d \mu_{\alpha}(x)=\int_{0}^{\infty}\left|V_{a} f(x)\right|^{p}\left|V_{a} f(x)\right|^{q-p} x^{2(\sigma-a-b) q} d \mu_{\alpha}(x)
$$

Since $a<(\alpha+1) / p^{\prime}$, by the pointwise estimate in the above lemma

$$
\left|V_{a} f(x)\right| \leq C x^{-(2 \alpha+2) / p}| | f| |_{p}
$$

hence

$$
\left|V_{a} f(x)\right|^{q-p} x^{2(\sigma-a-b) q} \leq C| | f \|_{p}^{q-p}
$$

due to the identity from assumptions. Hence

$$
\int_{0}^{\infty}\left|x^{2(\sigma-a-b)} V_{a} f(x)\right|^{q} d \mu_{\alpha}(x) \leq C\|f\|_{p}^{q-p} \int_{0}^{\infty}\left|V_{a} f(x)\right|^{p} d \mu_{\alpha}(x) \leq C\|f\|_{p}^{q}
$$

by the norm inequality from Lemma 3.2. The estimate of I_{3} is similar and we omit it. The proof of the theorem is complete.

After submitting this paper the authors became acquainted with the following result of Kanjin and Sato [The Hardy-Littlewood theorem on fractional integration for Laguerre series, Proc. Amer. Math. Soc., to appear]:

$$
\left\|I_{\sigma} f\right\|_{L_{v(\alpha q / 2)}^{q}} \leq C\|f\|_{L_{v(\alpha p / 2)}^{p}}, \quad 0<\frac{1}{q}=\frac{1}{p}-\sigma, \quad p>1, \quad \alpha \geq 0
$$

whereas for $-1<\alpha<0$ there occurs $\left(1+\frac{\alpha}{2}\right)^{-1}<p, q<-\frac{2}{\alpha}$ as additional restriction. Combining the above Theorem 1.1 in the case $a=b=\alpha=0$ with Kanjin's transplantation theorem (cf. [10]) one at once recovers the above stated result of Kanjin and Sato .

References

[1] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695 - 708.
[2] G. Gasper and W. Trebels, Jacobi and Hankel multipliers of type $(p, q), 1<p<q<\infty$, Math. Ann. 237 (1978), pp. $243-251$.
[3] G. Gasper and W. Trebels, Necessary multiplier conditions for Laguerre expansions, Canad. J. Math., 43 (1991), 1228 - 1242; II, SIAM J. Math. Anal. (to appear).
[4] E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag. Math., 44 (1982), pp. 161 - 171.
[5] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36 (1972), pp. $505-510$.
[6] B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II , Trans. Amer. Math. Soc. 147 (1970), pp. 433 - 460.
[7] B. Muckenhoupt, Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math. Soc. 64 (1986), No. 356.
[8] E. M. Stein and G. Weiss, Fractional integralson n-dimensional Euclidean space, J. Math. Mech. 7 (1958), pp. 503 - 514.
[9] K. Stempak, Almost everywhere summability of Laguerre series, Studia Math., 100 (1991), pp. $129-147$; II, ibid. 103 (1992), pp. $317-327$.
[10] K. Stempak and W. Trebels, On weighted transplantation and multipliers for Laguerre expansions, Math. Ann. (in print).
[11] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence, R.I., 1975.
[12] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge 1968.

[^0]: ${ }^{1}$ Dept. of Mathematics, Northwestern University, Evanston, IL 60208, USA. Supported in part by NSF Grant DMS-9103177.
 ${ }^{2}$ Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, $50-384$ Wrocław, Poland. Research of this author was done during a stay at the Fb Mathematik of the TH Darmstadt and was supported by the Deutsche Forschungsgemeinschaft under grant 436POL/115/1/0.
 ${ }^{3}$ Fb. Mathematik, TH Darmstadt, Schloßgartenstr. 7, D-64289 Darmstadt, Germany.

