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Abstract. As applications of the weighted transplantation theorems in Stempak and
Trebels [16] we consider (i) the characterization of one-dimensional Hermite multi-
pliers via Laguerre multipliers, (ii) extension theorems for Laguerre multipliers in
the spirit of Coifman and Weiss [3, Theorem 6.5], and (iii) necessary conditions for
Laguerre multipliers via backward differences.
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1 Introduction and Notations

The purpose of this paper is to apply the weighted version [16] of Kanjin’s transplan-
tation theorem [12] for Laguerre expansions in the following three instances:
(i) We characterize the one-dimensional Hermite multipliers on Lp, 1 < p < ∞,
via corresponding Laguerre multipliers. As a corollary of the results for Laguerre
multipliers we obtain a sufficient criterion of Hörmander type for Hermite multipliers
which is slightly better than that in Thangavelu [17, p. 91].
(ii) Coifman and Weiss [3, Theorem 6.5] related radial Fourier multipliers on Lp(Rn)
with those on Lp(Rn+2) via transference methods. We deduce an (improved) analog
for Laguerre multipliers which is in the nature of best possible.
(iii) Necessary conditions for Laguerre multipliers are derived via backward differ-
ences. Though these are not sharp they nevertheless give the impression that nec-
essary conditions of Kalnĕı-type (see [11] for the Jacobi series case, see [8] for the
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Laguerre series case) viewed till now as isolated in the framework of known necessary
[5] (sufficient [16]) criteria arise from backward differences.
The paper is of programmatic character: We can show in the integer case that trans-
plantation theorems reflect the structure of corresponding multiplier spaces, but fail
to extend the result indicated in (ii) to fractional differences at the moment. Also
it is evident that a full range transplantation theorem with general power weights is
needed (i.e. the analog of Muckenhoupt’s result [14, Theorem 1.6] for Jacobi series).

To become more precise let us introduce some notation. Let Lαn(x), α > −1, n ∈ N0,
be the classical Laguerre polynomials (see [18, p. 100]),

Rα
n(x) = Lαn(x)/Lαn(0), Lαn(0) = Aαn =

(
n+ α
n

)
=

Γ(n+ α+ 1)
Γ(n+ 1)Γ(α+ 1)

,

be the normalized ones. Introducing a forward difference operator ∆λ and a backward
one ∇λ by (whenever the sums exist)

∆λck =
∞∑
j=0

A−λ−1
j ck+j , ∇λck =

k∑
j=0

A−λ−1
j ck−j ,

we call into mind two identities [4, 6.15(4), 10.12(39)], essential for the following.

∆λRα
k (x) = Cα,λ x

λRα+λ
k (x) , x > 0, λ > −(α+ 1/2)/2 , (1)

∇λLα+λ
k (x) = Lαk (x) , x > 0, λ ∈ R . (2)

Using (2) and an interchange of the summation order yields for finite sequences {ak}
∞∑
k=0

(∆λak)Lα+λ
k (x) =

∞∑
k=0

akL
α
k (x) (3)

from which we can conclude

‖
∞∑
k=0

akL
α
k‖Lp

w(α)
≤ C ‖

∞∑
k=0

(k + 1)λ(∆λak)Lαk‖Lp
w(α)

, λ > 0 , 1 ≤ p <∞ . (4)

For, by [2, (3.30], we have

‖
∞∑
k=0

akL
α
k‖Lp

w(α)

≤ C
( ∫ ∞

0
|
∫ 1

0
(1− t)λ−1tα

∑
k

Γ(k + α+ λ+ 1)
Γ(k + α+ 1)

(∆λak)Lαk (xt) dte−x/2|pxαdx
)1/p
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≤ C
∫ 1

0
(1− t)λ−1tα−(α+1)/p

( ∫ ∞
0
|
∑
k

Γ(k + α+ λ+ 1)
Γ(k + α+ 1)

(∆λak)Lαk (y)e−y/2|pyαdy
)1/p

dt

when using the integral Minkowski inequality. Observing that {Γ(k+α+λ+1)/(Γ(k+
α+ 1)(k+ 1)λ)} ∈Mp

α;α for all p the assertion (4) follows. Generic positive constants
that are independent of the functions (and sequences) will be denoted by C. To a
function f ∈ Lpw(γ), where

Lpw(γ) = {f : ‖f‖Lp
w(γ)

= (
∫ ∞

0
|f(x)e−x/2|pxγ dx)1/p <∞} , 1 ≤ p <∞,

one can associate its formal Laguerre series

f(x) ∼ (Γ(α+ 1))−1
∞∑
k=0

f̂α(k)Lαk (x), f̂α(n) =
∫ ∞

0
f(x)Rα

n(x)xαe−x dx.

A scalar-valued sequence m = {mk}k∈N0 is called a (bounded) multiplier on Lpw(γ),
notation m ∈Mp

α; γ, if

‖
∞∑
k=0

mkakL
α
k‖Lpw(γ)

≤ C‖
∞∑
k=0

akL
α
k‖Lpw(γ)

for all polynomials f = (Γ(α+1))−1∑ akL
α
k (which are dense in Lpw(γ) for appropriate

γ – see Poiani [15, Theorem 2] ); the smallest constant C for which this holds is called
the multiplier norm ‖m‖Mp

α;γ
. We observe the duality property (1/p+ 1/p′ = 1)

Mp
α;γ = Mp′

α;αp′−γp′/p , −1 < γ < p(α+ 1)− 1, 1 < p <∞ ,

and, therefore, can restrict ourselves to the case p ≤ 2 in the following.

The weighted transplantation theorem [16, Corollary 4.3] we will apply can be for-
mulated as follows

Mp
α;α+δ = Mp

β;β , β = α+
2δ

2− p , 1 < p < 2 , α, β > −1, (5)

provided β satisfies the condition
(2β + 2)(1

p
− 1

2) < 1 if α, β ≥ 0
−1 < β < 0 if β < 0 and α > β

β < αp
2−p + 2(p−1)

2−p if α < 0 and α < β .

(6)

This relation already indicates the essential role played by transplantation theorems
in the examination of the structure of multiplier spaces. Let us now turn to our first
application, the characterization of Hermite multipliers.
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2 Hermite multipliers

The Hermite polynomials are given by [18, p. 106]

Hn(x) = (−1)nex
2
( d
dx

)ne−x
2
, x ∈ R , n ∈ N0 .

For 1 ≤ p <∞ define the Lebesgue spaces

Lpw(H;γ) =
{
f : ‖f‖Lp

w(H;γ)
=
( ∫ ∞
−∞
|f(x)e−x

2/2|pxγdx
)1/p

<∞
}
, γ > −1;

γ > −1 is assumed to ensure that Hk ∈ Lpw(H;γ) for all k ∈ N0. Define in the canonical
way Hermite coefficients f̂H(k) of f ∈ Lpw(H;γ) by

f̂H(k) = hHk

∫ ∞
−∞

f(t)Hk(t)e−t
2
dt , hHk =

( ∫ ∞
−∞

[Hk(x)]2e−x
2
dx
)−1

= (
√
π2kk!)−1.

By Hölder’s inequality, the f̂H(k) exist if γ < p−1; for these γ associate to f ∈ Lpw(H;γ)
its Hermite expansion

f(x) ∼
∞∑
k=0

f̂H(k)Hk(x) .

We call a scalar-valued sequence m = {mk}k∈N0 a Hermite multiplier, m ∈ Mp
H;γ , if

for Tmf ∼
∑
mkf̂H(k)Hk(x) there holds

‖Tmf‖Lp
w(H;γ)

≤ ‖m‖Mp
H;γ
‖f‖Lp

w(H;γ)
;

if γ = 0 write Mp
H;0 = Mp

H . Since the polynomials are dense in Lpw(H;γ) , −1 < γ <
p − 1, (see [15, Theorem 7]) we restrict ourselves in the following to polynomial f .
Now observe that H2n are even, H2n+1 are odd polynomials so that one can uniquely
decompose f ∈ Lpw(H;γ) into its even and its odd part,

fe(x) =
1
2

(f(x) + f(−x)) , fo(x) =
1
2

(f(x)− f(−x)) .

Then
‖f‖Lp

w(H;γ)
≤ ‖fe‖Lp

w(H;γ)
+ ‖fo‖Lp

w(H;γ)
≤ 2‖f‖Lp

w(H;γ)

and for their Hermite coefficients we obtain

(fe)̂H(k) =
{
f̂H(k) , k even
0 , k odd

, (fo)̂H(k) =
{

0 , k even
f̂H(k) , k odd

.

From this it is clear (see [7] in the ultraspherical case) that the Mp
H;γ–multiplier norm

of m is equivalent to the multiplier norm of m restricted to the subspace of even

4



Lpw(H;γ)–functions plus the multiplier norm of m restricted to the subspace of odd
Lpw(H;γ)–functions, i.e.,

‖m‖Mp
H;γ
≈ ‖m‖

Mp
H;γ|even

+ ‖m‖
Mp
H;γ|odd

.

Via quadratic transformations [18, (5.6.1)] one can reduce the Hermite polynomials
to Laguerre polynomials

H2m(x) = (−1)m22mm!L−1/2
m (x2) , H2m+1(x) = (−1)m22m+1m!xL1/2

m (x2) ;

thus in particular

∞∑
k=0

m2kf̂H(2k)H2k(x) =
∞∑
k=0

m2kakL
−1/2
k (x2) , ak = (−1)k22kk!f̂H(2k) ,

∞∑
k=0

m2k+1f̂H(2k+1)H2k+1(x) =
∞∑
k=0

m2k+1bkxL
1/2
k (x2) , bk = (−1)k22k+1k!f̂H(2k+1) .

Since

‖
∞∑
k=0

m2kf̂H(2k)H2k‖Lp
w(H;γ)

= C
( ∫ ∞

0
|
∞∑
k=0

m2kakL
−1/2
k (t)e−t/2|pt(γ−1)/2dt

)1/p

it immediately follows that

‖{m2k}‖Mp
H;γ|even

≈ ‖{m2k}‖Mp
−1/2;(γ−1)/2

;

similarly
‖{m2k+1}‖Mp

H;γ|odd
≈ ‖{m2k+1}‖Mp

1/2;(γ+p−1)/2

and, therefore,

‖{mk}‖Mp
H;γ
≈ (‖{m2k}‖Mp

−1/2;(γ−1)/2
+ ‖{m2k+1}‖Mp

1/2;(γ+p−1)/2
) .

If we now apply the transplantation theorem (5) in the case γ = 0, we obtain the
announced characterization, see part (a) of the following corollary.

Corollary 2.1 (a) For 1 < p <∞ there holds

‖{mk}‖Mp
H
≈ (‖{m2k}‖Mp

−1/2;−1/2
+ ‖{m2k+1}‖Mp

−1/2;−1/2
) .

(b) Defining ∆2mk = mk −mk+2 we have for 1 < p <∞

‖{mk}‖Mp
H
≤ C

(
‖m‖`∞ + sup

N
(

2N∑
N

(k + 1)|∆2mk|2)1/2
)
.
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(c) For 4/3 < p < 4 the following sufficient condition is true

‖{mk}‖Mp
H;1−p/2

≤ C
(
‖m‖`∞ + sup

N
(

2N∑
N

(k + 1)|∆2mk|2)1/2
)
.

Part (a) and [16, Corollary 4.5] imply (b), (5) for γ = 1 − p/2, duality and [16,
Theorem 1.1] give (c) of Corollary 2.1. The two sufficient Hermite multiplier criteria
(b) and (c) contain those of Thangavelu [17, Theorem 4.2.1] for one dimension and
even improve them slightly.

3 An extension theorem in the spirit of Coifman
and Weiss

In [3, Theorem 6.5], Coifman and Weiss have shown the following extension result for
radial Fourier multipliers:
Denote by ξ(k) = (ξ1 , . . . , ξk) , k ∈ N, a vector in the k-dimensional Euclidean
space Rk. If [tn−1(tnm(t))′]t=|ξ(n)| , t ≥ 0, is a Fourier multiplier on Lp(Rn), then
m(|ξ(n+2)|) ∈Mp(Rn+2) and

‖m(|ξ(n+2)|)‖Mp(Rn+2) ≤ C‖[tn−1(tnm(t))′]t=|ξ(n)|‖Mp(Rn) , 1 ≤ p ≤ ∞ .

While for p = 1 this result is best possible, it is of course not natural for p = 2
(recall M2(Rk) = L∞(Rk)). On account of Zafran’s result [19] one cannot directly
improve it via interpolation. Here we want to give an analog of the Coifman and Weiss
result in the framework of Laguerre multipliers, an analog which is in the nature of
best possible, thus indicating what to look for in the Fourier multiplier case. Having
established the Laguerre multiplier result, on account of Guy’s [10] transplantation
theorem, the corresponding result for (modified) Hankel multipliers is obvious, thus
a result for radial Fourier multipliers restricted to radial functions.
On account of duality we will restrict ourselves to the case 1≤ p ≤ 2.

Let us start with the case 1 < p < 2; by (3) we have for finite sequences {ak}k∈N0

that

‖
∞∑
k=0

mkakL
α
k‖Lpw(α)

= ‖
∞∑
k=0

∆(mkak)Lα+1
k ‖Lp

w(α)

≤ ‖
∞∑
k=0

(k + 1)(∆mk)
ak

k + 1
Lα+1
k ‖Lp

w(α)
+ ‖

∞∑
k=0

mk+1(∆ak)Lα+1
k ‖Lp

w(α)
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≤ ‖{(k + 1)∆mk}‖Mp
α+1;α
‖
∞∑
k=0

ak
k + 1

Lα+1
k ‖Lp

w(α)
+ ‖{mk+1}‖Mp

α+1;α
‖
∞∑
k=0

∆akLα+1
k ‖Lp

w(α)

≤ C(‖{(k + 1)∆mk}‖Mp
α+1;α

+ ‖{mk+1}‖Mp
α+1;α

)‖
∑

akL
α
k‖Lpw(α)

where the first estimate on the right hand side follows from [2, (3.30)] and [1, Corollary
2.2] and the second from (3). Hence

‖m‖Mp
α;α
≤ C(‖{(k + 1)∆mk}‖Mp

α+1;α
+ ‖{mk+1}‖Mp

α+1;α
)

An application of the transplantation result (5) immediately gives

Corollary 3.1 Let 1 < p < 2; if β = α − p
2−p > −1 satisfies (2β + 2)(1

p
− 1

2) < 1,
then

‖m‖Mp
α;α
≤ C(‖{(k + 1)∆mk}‖Mp

β;β
+ ‖{mk+1}‖Mp

β;β
) .

Remark 1. Concerning smoothness of the involved multiplier sequences, this result is
in accordance with the necessary conditions in [5, II, Corollary 1.3] and the sufficient
ones in [16, Corollary 1.2]. In both types of conditions the smoothness of an Mp

β;β-
multiplier sequence is described by the quantities (2β+ 1)(1

p
− 1

2) and (2β+ 2)(1
p
− 1

2),
resp.. Increasing the parameter from β to α , α and β as in Corollary 3.1, should
require an additional smoothness of 1 in the necessary conditions as well as in the
sufficient ones; this being true is at once verified since 2α(1

p
− 1

2) − 2β(1
p
− 1

2) = 1 .
Thus the counterexamples showing that the necessary conditions and the sufficient
ones just mentioned could not be improved within the setting of wbv-spaces can be
taken to show that Corollary 3.1 is best possible.
2. It is clear that a full range transplantation theorem with general power weights
would remove the restriction on β – see also Corollary 3.2 below where the case p = 1
is discussed and for whose proof no transplantation theorem is needed.

Let us now turn to the case p = 1; consider again a finite sequence {ak} and assume
without loss of generality that a0 = 0. By [18, (5.1.14)] we have for α > −1 that

x
∑

akL
α+1
k = (1 + α)

∑
akL

α
k −

∑
(k + 1)(∆ak)Lαk+1

which implies that

‖
∑

akL
α+1
k ‖L1

w(α+1)
≈ ‖

∑
(k + 1)∆akLαk‖L1

w(α)
. (7)

The “≤”–direction directly follows by the triangle inequality, (4), and Proposition
3.3 (a) below which discusses the boundedness of the shift ooperator; the converse
inequality is a consequence of the triangle inequality (from below) and the restriction
result in [6, Theorem 2.1].
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Corollary 3.2 For α ≥ 0 there holds

‖m‖M1
α+1;α+1

≈ ‖{mk+1}‖M1
α;α

+ ‖{(k + 1)∆mk}‖M1
α;α
.

Remark 3. The additional assumption α ≥ 0 arises from the circumstance that the
boundedness of the generalized Laguerre translation, hence of the convolution, has
only been proved for these α-values – see [9]; but this property is used in the proof
of (8) below.

Let us start with the “≤”–direction. From (7) we have with the aid of (4)

‖
∑

mkakL
α+1
k ‖L1

w(α+1)
≤ C‖

∑
(k + 1)(∆mkak)Lαk‖L1

w(α)

≤ C ‖
∑

(k + 1)(∆mk)akLαk‖L1
w(α)

+ C ‖
∑

mk+1(k + 1)(∆ak)Lαk‖L1
w(α)

≤ C (‖{mk+1}‖M1
α;α

+ ‖{(k + 1)∆mk}‖M1
α;α

)‖
∑

(k + 1)(∆ak)Lαk‖L1
w(α)

≤ C (‖{mk+1}‖M1
α;α

+ ‖{(k + 1)∆mk}‖M1
α;α

)‖
∑

akL
α+1
k ‖L1

w(α+1)

by (7). For the converse we note that by [6] we have for α ≥ 0

‖m‖M1
α;α
≈ sup

0<r<1
‖
∑

rkmkL
β
k‖L1

w(α)
, ‖m‖M1

α;α
≤ C‖m‖M1

α+1;α+1
. (8)

Thus, up to the proof of the fact that the shift of a multiplier sequence is a bounded
operator in the multiplier norm, there remains to estimate uniformly in r, 0 < r < 1

‖
∑

rk(k + 1)(∆mk)Lαk‖L1
w(α)

≤ ‖
∑

(k + 1)(∆rkmk)Lαk‖L1
w(α)

+ ‖
∑

mk+1(k + 1)(∆rk)Lαk‖L1
w(α)

≤ C ‖
∑

mkr
kLα+1

k ‖L1
w(α+1)

+ C ‖{mk+1}‖M1
α;α
‖
∑

(k + 1)(1− r)rkLαk‖L1
w(α)

≤ C (‖m‖M1
α+1;α+1

+ ‖{mk+1}‖M1
α;α

)

by (7) since, when applying [5, II, Theorem 3.1], it turns out that {rk} as well as
{(k + 1)(1 − r)rk} are Laguerre coefficients of L1

w(α)-functions, whose L1-norms are
uniformly bounded in r; hence the assertion via (8) and the boundedness of the shift
operator which we prove below.

Proposition 3.3 (a) Let α > −1 and 1 ≤ p ≤ 2. Then

‖
∞∑
k=0

akL
α
k+1‖Lp

w(α)
≤ C ‖

∞∑
k=0

akL
α
k‖Lp

w(α)
.
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Also, setting Lα−1(x) = 0, the converse holds:

‖
∞∑
k=0

akL
α
k−1‖Lp

w(α)
≤ C ‖

∞∑
k=0

akL
α
k‖Lp

w(α)
.

(b) Let {mk} be a scalar valued sequence with m0 = 0. Then we have for α > −1 and
1 ≤ p <∞ that

‖{mk+1}‖Mp
α;α
≤ C ‖{mk}‖Mp

α;α
.

Using duality, (b) directly follows from (a) the latter being clear for p = 2 by Parseval’s
formula; thus, by the Riesz interpolation theorem, we have only to show (a) in the
case p = 1. By [18, (5.1.14)] there holds

− x

k + 1
Lα+1
k (x) = Lαk+1(x)− (1 +

α

k + 1
)Lαk (x) (9)

and thus

‖
∞∑
k=0

akL
α
k+1‖L1

w(α)
≤ C ‖

∞∑
k=0

akL
α
k‖L1

w(α)
+ ‖

∞∑
k=0

ak
k + 1

Lα+1
k ‖L1

w(α+1)
.

But by [2, (3.30)] and an interchange of the integration order the last term turns out
to be dominated by a constant times ‖∑ akL

α
k‖L1

w(α)
.

For the converse first note that by [4, 10.12(5)]

k!xαe−xLαk (x) = ((d/dx)k−1e−xxk−1+(α+1))′ = ((k − 1)!xα+1e−xLα+1
k−1(x))′

and, therefore, since xα+1e−xLα+1
k−1(x)→ 0 for x→∞ ,

k
∫ ∞
x

yαe−yLαk (y) dy = −xα+1e−xLα+1
k−1(x) . (10)

Now we estimate the left-shift operator. By (9) and the triangle inequality

‖
∑

akL
α
k−1‖L1

w(α)
≤ ‖

∑ k

k + α
akL

α
k‖L1

w(α)

+‖
∑ ak

k + α
Lα+1
k−1‖L1

w(α+1)
≤ C ‖

∑
akL

α
k‖L1

w(α)

since {k/(k + α)} ∈ M1
α;α and the term with Lα+1

k−1 can be estimated with the aid of
(10) and an interchange of the integration order.

Proposition 3.3 allows us to reformulate Corollary 3.1 by iterating the procedure
N-times, N ∈ N fixed, to obtain:
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Corollary 3.4 Let 1 ≤ p < 2, N ∈ N, and β = α− Np
2−p . Then

‖m‖Mp
α;α
≤ C

N∑
j=0
‖{(k + 1)j∆jmk}‖Mp

β;β
.

provided that β > −1 and (2β + 2)(1
p
− 1

2) < 1 when 1 < p < 2, and β ≥ 0 when
p = 1.

4 Necessary conditions based on backward differ-
ences

Here we want to indicate how backward differences can be used to deduce neces-
sary multiplier criteria and how the transplantation theorem leads to improvements.
Starting with (1) we have for λ ≥ 0 that

C xλLλk(x) = Lλk(0)∆λL0
k(x) , x > 0,

and hence for a finite sequence {ak}

xλf(x) := xλ
∑

akL
λ
k(x) = C

∑
akL

λ
k(0)∆λR0

k(x) = C
∑
∇λ(akLλk(0))L0

k(x) ,

or by the uniqueness property for Laguerre expansions

[xλf(x)]̂0(k) = ∇λ(akLλk(0)) .

Hölder’s inequality gives, with a parameter δ ≥ 0 to be chosen later,

|∇λ(akLλk(0))| ≤ ‖f‖Lp
w(λ−δ)

(
∫ ∞

0
|R0

k(x)e−x/2|p′xλ+δp′/pdx)1/p′ .

When estimating the last integral let us restrict to the case 1 ≤ p < 4/3. Markett’s
[13] Lemma 1, 5th case, leads to the estimate

sup
k

∣∣∣(k + 1)δ+(λ−δ+1)/p′∇λ(akLλk(0))
∣∣∣ ≤ C ‖f‖Lp

w(λ−δ)
, δ <

p

6
, λ ≤ −δp

′

p
+
p′

6
− 2

3
.

This inequality is very suited to derive a necessary multiplier criterion in a trivial
way (in contrast to the procedure in [5]). As in [5, I,(9)], choose the test function
f = Φ(N), where the Laguerre coefficients of Φ(N) are smooth, = 1 if k ≤ N and = 0
if k ≥ 2N . There holds [5, I,(9)]

‖Φ(N)‖Lp
w(λ−δ)

≤ C (N + 1)(α+1)/p′+δ/p
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and hence, with ak = mk[Φ(N)]
λ̂
(k) and m ∈Mp

λ;λ−δ, the following result via (5).

Corollary 4.1 Let 0 ≤ λ ≤ −δp′

p
+ p′

6 −
2
3 , 0 ≤ δ < p

6 , β = λ − 2δ
2−p , and let λ, β

satisfy the first two conditions of (6). Then

sup
k
|∇λ(mkL

λ
k(0))| ≤ C ‖m‖Mp

λ;λ−δ
≤ C ‖m‖Mp

β;β
, 1 < p < 4/3.

Remark 4. The use of the parameter δ (near p/6) and the resulting application of the
transplantation theorem (5) yields a definite improvement of a necessary condition
resulting from the choice δ = 0 (when no transplantation is needed). Consider e.g.
the case p = 7/6, 0 ≤ δ ≤ 1/18 which implies at least λ ≤ 1/6. Take as test multiplier
on Lpw(0) the one corresponding to the partial sum operator, i.e., m(n)

k = 1, 0 ≤ k ≤ n,
and = 0 otherwise.
Choosing δ = 0, λ = β = 0, only gives O(1) as lower bound whereas δ = 1/18, β = 0
leads to the admissible λ = 2/15 and a divergence behavior of the same multiplier
family on the same Lp-space of at least O((n + 1)2/15). Corollary 1.1 in [5, I], which
describes a necessary conditon based on forward differences with increment 1, gives
for this example the slightly better result O((n + 1)1/7) (with the present backward
differences one can still try to optimize δ < p/6). There it is also shown that for
p = 1 [5, Corollary 1.1] cannot be improved though it does not yield the correct
divergence behavior of the partial sum operator. In [5, II] it is shown that via the use
of differences with mixed increment 1 and 2 one can obtain the “right” divergence
behavior O((n+ 1)3/14).
The example just considered again makes clear the need for a transplantation theorem
with full range power weights.

5. The value of Corollary 4.1 is more to be seen in the fact that it allows one to
integrate the Kalnĕı-type necessary conditions, which looked a bit isolated in the
framework of those conditons known till now (see [5] and [16]). In [8] the following
sharp criterion is shown:
Let α ≥ 0 and m = {mk} be a finite sequence with mk = 0 for k ≥ n+ 1. Then

n∑
k=0

|mk|
(k + 1)α+1/2

(m+ 1− k)α+3/2 ≤ C ‖m‖M1
α;α
.

Intuitively it is clear that the left hand side is an upper bound for∇α+1/2(mnL
α+1/2
n (0)),

the type of condition occurring in Corollary 4.1. Unfortunately it is not clear to the
authors why the difference order is 1/2 higher than in Corollary 4.1.

11



References

[1] K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral
operators, SIAM J. Math. Anal., 14 (1983), 834 – 844.

[2] R. Askey and J. Fitch, Integral representations for Jacobi polynomials and some
applications, J. Math. Anal. Appl., 26 (1969), 411 – 437.

[3] R. R. Coifman and G. Weiss, Transference Methods is Analysis,CBMS No. 31,
Amer. Math. Soc., Providence, R.I., 1977.

[4] A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcen-
dental Functions, vols. I & II, McGraw hill, New York, 1953.

[5] G. Gasper and W. Trebels, On necessary multiplier conditions for Laguerre
expansions, Canad. J. Math., 43 (1991), 1228 – 1242; II, SIAM J. Math. Anal.,
25 (1994), 384 – 391.

[6] G. Gasper and W. Trebels, On a restriction problem of de Leeuw type for
Laguerre multipliers, Acta Math. Hungar., 68 (1995), 135 – 149.

[7] G. Gasper and W. Trebels, Ultraspherical multipliers revisited, Acta Sci. Math.
(Szeged), 60 (1995), 291 – 309.

[8] G. Gasper and W. Trebels, A lower estimate for the Lebesgue constants of linear
means of Laguerre expansions, Results Math. (in print).

[9] E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag.
Math., 44 (1982), 161 – 171.

[10] D. L. Guy, Hankel multiplier transformations and weighted p-norms, Trans.
Amer. Math. Soc., 95 (1960), 137 – 189.
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