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Abstract. A Lemma of Riemann–Lebesgue type for Fourier–Jacobi coefficients is
derived. Via integral representations of Dirichlet–Mehler type for Jacobi polynomials
its proof directly reduces to the classical Riemann–Lebesgue Lemma for Fourier co-
efficients. Other proofs are sketched. Analogous results are also derived for Laguerre
expansions and for Jacobi transforms.
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The classical Riemann–Lebesgue Lemma states (see [2, p. 168], [12, (4.4), p. 45]):

If f ∈ L1(−π, π), then

lim
|k|→∞

∫ π

−π
f(θ)e−ikθdθ = 0.

Also, by using the identities eiθeiφ = ei(θ+φ) and eiθ = cos θ + i sin θ, if a, b, c0, c1 ∈ R
and f ∈ L1(a, b), then

lim
|k|→∞

∫ b

a
f(θ) cos ((k + c0)θ + c1) dθ = 0. (1)

Here we will first consider the extension of this result to Fourier–Jacobi coefficients.
For this purpose we need to introduce the following notation. Fix α, β > −1 and let
L(α,β) denote the space of measurable functions on [0, π] with finite norm

‖f‖L(α,β) =
∫ π

0

∣∣∣f(θ)
∣∣∣( sin

θ

2

)2α+1(
cos

θ

2

)2β+1
dθ.
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Define normalized Jacobi polynomials by R
(α,β)
k (x) = P

(α,β)
k (x)/P (α,β)

k (1), where P
(α,β)
k (x)

is the Jacobi polynomial of degree k and order (α, β), see [11]. For f ∈ L(α,β), its k-th
Fourier–Jacobi coefficient f̂(α,β)(k) is defined by

f̂(α,β)(k) =
∫ π

0
f(θ) R

(α,β)
k (cos θ)

(
sin

θ

2

)2α+1(
cos

θ

2

)2β+1
dθ . (2)

Then f has an expansion of the form

f(θ) ∼
∞∑

k=0

f̂(α,β)(k) h
(α,β)
k R

(α,β)
k (cos θ) ,

where the normalizing factors h
(α,β)
k are given by

h
(α,β)
k =

(
‖(R(α,β)

k )2‖L(α,β)

)−1

=
(2k + α + β + 1)Γ(k + α + β + 1)Γ(k + α + 1)

Γ(k + β + 1)Γ(k + 1)Γ(α + 1)Γ(α + 1)
≈ (k + 1)2α+1

and the ≈ sign means that there are positive constants C, C ′ such that
C ′h(α,β)

k ≤ (k + 1)2α+1 ≤ Ch
(α,β)
k holds.

In a recent paper [8] on ultraspherical multipiers we used the α = β case of the
observation that if (α, β) ∈ S with

S := {(α, β) : α ≥ β > −1, α ≥ −1/2},

then, by [11, Theorem 7.32.1],

max
−1≤x≤1

|R(α,β)
k (x)| ≤ 1, k ∈ N0,

and hence
|f̂(α,β)(k)| ≤ ‖f‖L(α,β) , k ∈ N0.

Since R
(−1/2,−1/2)
k (cos θ) = cos kθ and thus, by (1), limk→∞ f̂(−1/2,−1/2)(k) = 0 for

f ∈ L(−1/2,−1/2), this led us to consider the problem of determining all (α, β) with
α, β > −1 for which

lim
k→∞

f̂(α,β)(k) = 0 (3)

whenever f ∈ L(α,β), and to derive the following extension of the Riemann–Lebesgue
Lemma to Fourier–Jacobi coefficients.

Lemma. Let α, β > −1. Then (3) holds for each f ∈ L(α,β) if and only if (α, β) ∈ S.
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Proof. First consider the case β > α > −1. Formula 16.4 (1) in [4, p. 284] (corrected
by inserting a missing n! factor into the denominator of the right hand side) shows
for α > −1, β + ρ > −1 that

|
∫ 1

−1
R

(α,β)
k (x)(1 − x)α(1 + x)β+ρdx| ≈ (k + 1)−2ρ−α−β−2 . (4)

Since −2ρ − α − β − 2 = β − α − 2(β + ρ + 1), it follows that if β > α > −1 and
0 < β + ρ + 1 < (β − α)/2, then the right hand side of (4) tends to ∞ as k → ∞.

Now let −1 < β ≤ α < −1/2. Introduce the linear functional Tk : L(α,β) → C, Tkf :=
f̂(α,β)(k). By [11, Theorem 7.32.1], |P (α,β)

k (x)| attains its maximum at a point x′ ( one
of the two maximum points nearest x0 = (β −α)/(α +β +1)) and |P (α,β)

k (x′)| ∼ (k +
1)−1/2. By the continuity of the Jacobi polynomial P

(α,β)
k (x) there exists a δk > 0 such

that 2|P (α,β)
k (x)| ≥ |P (α,β)

k (x′)| for all x with |x−x′| ≤ δk . Now choose fk ∈ L(α,β) with
suppfk ⊂ {x : |x − x′| ≤ δk}, sgn fk(x) = sgn P

(α,β)
k (x) if |x − x′| ≤ δk, ‖fk‖L(α,β) = 1.

Then

|Tkf | = |f̂α,β(k)| ≥ C|P (α,β)
k (x′)|

2|P (α,β)
k (1)|

‖fk‖L(α,β) ≥ C ′(k + 1)−α−1/2,

i.e., ‖Tk‖ ≥ C ′(k + 1)−α−1/2. Hence, by the uniform boundedness principle there
exists an f ∗ ∈ L(α,β) with limk→∞ |Tkf

∗| = ∞. Summarizing, (3) cannot hold for each
f ∈ L(α,β) when (α, β) 6∈ S.

Now let α ≥ −1/2, α > β > −1. By the definition of the Fourier–Jacobi coefficients,

f̂(α,β)(k) =
( ∫ π/2

0
+

∫ π

π/2

)
f(θ)R(α,β)

k (cos θ)
(

sin
θ

2

)2α+1(
cos

θ

2

)2β+1
dθ =: Ik + Jk.

Then Jk tends to 0 for k → ∞ if α > −1/2 and α > β > −1 since, by [11, paragraph
below Theorem 7.32.1],

max
π/2≤θ≤π

|R(α,β)
k (cos θ)| ≤ C(k + 1)max{β,−1/2}−α.

If α = β, then Jk is of the same type as Ik. Thus we can restrict ourselves to a
discussion of Ik.

To estimate Ik we will use the formula of Dirichlet–Mehler type in Gasper [6, (6)]

R
(α,β)
k (cos θ) =

2(α+β+1)/2Γ(α + 1)
Γ(1/2)Γ(α + 1/2)

(1 − cos θ)−α

×
∫ θ

0
cos (k + (α + β + 1)/2)φ

(cos φ − cos θ)α−1/2

(1 + cos φ)(α+β)/2

× 2F1

[α + β + 1
2

,
α + β

2
; α +

1
2
;
cos φ − cos θ

1 + cos φ

]
dφ, (5)
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which is valid for α > −1/2, 0 < θ < π. Inserting this integral representation into Ik

and interchanging the order of integration we find that

Ik = C
∫ π/2

0
g(φ) cos (k + (α + β + 1)/2)φ dφ

with

g(φ) =
(

cos
φ

2

)−α−β
∫ π/2

φ
f(θ)(cos φ − cos θ)α−1/2

(
sin

θ

2

)(
cos

θ

2

)2β+1

× 2F1

[α + β + 1
2

,
α + β

2
; α +

1
2
;
cos φ − cos θ

1 + cos φ

]
dθ.

Now notice that 0 < cos θ < cos φ < 1 and (cos φ − cos θ)/(1 + cos φ) < 1/2 when
0 < φ < θ < π/2. Thus the 2F1 function in the above integrand is uniformly bounded
and∫ π/2

0
|g(φ)| dφ ≤ C

∫ π/2

0

∫ π/2

φ
|f(θ)|(cos φ − cos θ)α−1/2

(
sin

θ

2

)(
cos

θ

2

)2β+1
dθ dφ

≤ C
∫ π/2

0
|f(θ)| h(θ)

(
sin

θ

2

)2α+1(
cos

θ

2

)2β+1
dθ

with
h(θ) = (sin θ)−2α

∫ θ

0
(cos φ − cos θ)α−1/2 dφ.

Since

h(θ) ≤ C(sin θ)−2α
∫ θ

0

(
sin

θ + φ

2
sin

θ − φ

2

)α−1/2
dφ

≤ C(sin θ)−α−1/2
[ ∫ θ/2

0
+

∫ θ

θ/2

](
sin

θ − φ

2

)α−1/2
dφ

≤ C(sin θ)−1
∫ θ/2

0
dφ + C(sin θ)−α−1/2

∫ θ

θ/2
(θ − φ)α−1/2dφ ≤ C

when α > −1/2 and 0 < θ ≤ π/2, it follows that g(φ) is integrable on [0, π/2] and
hence Ik → 0 as k → ∞ by (1).

It remains to consider the case α = −1/2, −1 < β < −1/2. To handle this case
we first observe that by letting α decrease to −1/2 in (5) and proceeding as in the
derivation of formula (6.13) in [5] we obtain that

R
(−1/2,β)
k (cos θ) =

(
cos

θ

2

)−β−1/2
cos (k + β/2 + 1/4)θ

+
1
4
(β2 − 1

4
)
(

sin
θ

2

) ∫ θ

0

(
cos

φ

2

)−β−3/2
cos (k + β/2 + 1/4)φ

× 2F1

[
β/2 + 5/4, β/2 + 3/4; 2;

cos φ − cos θ

1 + cos φ

]
dφ (6)
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for 0 < θ < π. Since the series 2F1[β/2+5/4, β/2+3/4; 2; x] converges at x = 1 when
β < 0, it converges uniformly on [0, 1], and thus, observing that

0 <
cos φ − cos θ

1 + cos φ
< 1 , 0 < φ < θ < π,

it is clear that the 2F1 series in the above integral is uniformly bounded when β < 0.
Hence, for −1 < β < −1/2, the use of (6) in (2) gives

f̂(−1/2,β)(k) = c1

∫ π

0
f(θ)

(
cos

θ

2

)β+1/2
cos (k + β/2 + 1/4)θ dθ

+c2

∫ π

0
f(θ)

(
sin

θ

2

)(
cos

θ

2

)2β+1
[ ∫ θ

0

(
cos

φ

2

)−β−3/2
cos (k + β/2 + 1/4)φ

× 2F1

[
β/2 + 5/4, β/2 + 3/4; 2;

cos φ − cos θ

1 + cos φ

]
dφ

]
dθ = Mk + Nk,

say. Since ‖f‖L(−1/2,β/2−1/4) ≤ ‖f‖L(−1/2,β) for β ≤ −1/2, Mk → 0 as k → ∞ by the
Riemann–Lebesgue Lemma (1).
Concerning Nk, after an interchange of integration one arrives at

Nk = c2

∫ π

0
cos (k + β/2 + 1/4)φ

[(
cos

φ

2

)−β−3/2
∫ π

φ
f(θ)

(
sin

θ

2

)(
cos

θ

2

)2β+1

× 2F1

[
β/2 + 5/4, β/2 + 3/4; 2;

cos φ − cos θ

1 + cos φ

]
dθ

]
dφ

and the assertion again follows by (1) once we have shown that
∫ π
0 |[. . .]| dφ < ∞. But

this is immediate, since the occurring 2F1 function is uniformly bounded,∣∣∣ ∫ π

φ
. . . dθ

∣∣∣ ≤ C
∫ π

0
|f(θ)|

(
cos

θ

2

)2β+1
dθ < ∞, 0 < φ < π,

and ∫ π

0

(
cos

φ

2

)−β−3/2
dφ < ∞ , β < −1/2.

Thus the Lemma is established.

Remarks. 1) Since P
(α,β)
k (−x) = (−1)kP

(β,α)
k (x) and P

(α,β)
k (1) =

(
k+α

k

)
≈ (k + 1)α,

the Lemma implies that if f ∈ L(α,β) and max{α, β} ≥ −1/2, then∫ π

0
f(θ)P (α,β)

k (cos θ)
(

sin
θ

2

)2α+1(
cos

θ

2

)2β+1
dθ = o(kmax{α,β}), k → ∞.

2) Notice that the above proof via the Dirichlet-Mehler type integral is an elementary
one; it reduces the problem straight to the classical Riemann-Lebesgue Lemma for
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Fourier coefficients and does not use any density properties of subspaces of L(α,β). By
making use of such properties we can give the following simpler proofs. It is well known
that the subspaces of cosine polynomials, simple functions, and of step functions are
dense in L(α,β). Thus, if f ∈ L(α,β) and ε > 0, then we can write f = g + h, where
‖h‖L(α,β) < ε and g is a cosine polynomial, a simple function, or a step function. Now
let (α, β) ∈ S. Since

|ĥ(α,β)(k)| ≤ ‖h‖L(α,β) < ε, k ∈ N0,

because |R(α,β)
k (cos θ)| ≤ 1 for (α, β) ∈ S, to prove that f̂(α,β)(k) → 0 as k → ∞

it suffices to show that ĝ(α,β)(k) → 0 as k → ∞. This is obvious when g is a co-
sine polynomial since ĝ(α,β)(k) = 0 for all sufficiently large k. If g is a simple func-
tion then, being bounded, it is square integrable with respect to the weight function(

sin θ
2

)2α+1(
cos θ

2

)2β+1
and the Parseval formula gives

∑
(k + 1)2α+1|ĝ(α,β)(k)|2 < ∞,

which implies that ĝ(α,β)(k) → 0 as k → ∞ when (α, β) ∈ S. If g is a step function
then it is a finite linear combination of characteristic functions χ(θ) of subintervals
of (0, π), so that it remains to show for such χ that χ̂(α,β)(k) → 0 as k → ∞; but this
easily follows by using the integral [3, 10.8 (38)] and the asymptotic expansion [11,
(8.21.10)].

In the case of Laguerre expansions one does not have a Dirichlet–Mehler type formula
at one’s disposal. However, the preceding three arguments apply. To sketch this we
introduce the Lebesgue space

Lw(α) = {f : ‖f‖Lw(α) =
∫ ∞

0
|f(x)|e−x/2xα dx < ∞} , α > −1,

and the normalized Laguerre polynomials Rα
k (x)

Rα
k (x) = Lα

k (x)/Lα
k (0), Lα

k (0) = Aα
k =

(
k + α

k

)
=

Γ(k + α + 1)
Γ(k + 1)Γ(α + 1)

,

where Lα
k (x), k ∈ N0, is the classical Laguerre polynomial of degree k and order α

(see Szegö [11, p. 100]). Associate to f its formal Laguerre series

f(x) ∼ (Γ(α + 1))−1
∞∑

k=0

f̂α(k)Lα
k (x),

where the Fourier Laguerre coefficients of f are defined by

f̂α(k) =
∫ ∞

0
f(x)Rα

k (x)xαe−x dx

when the integrals exist ( for a more detailed description see, e.g., [7]). If α ≥ 0 then,
by [3, 10.18 (14)],

|e−x/2Rα
k (x)| ≤ 1 , x ≥ 0, k ∈ N0.
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Since polynomials and simple functions are dense in Lw(α), by proceeding as above
it follows again that a Riemann-Lebesgue Lemma for Fourier-Laguerre coefficients
holds:

lim
k→∞

f̂α(k) = 0, f ∈ Lw(α) , α ≥ 0 .

This can also be proved by using the density of step functions in Lw(α) and the
observation that, by [3, 10.12 (28)] and [11, (8.22.1)],∫ a

0
Rα

k (x)e−xxα dx =
1

α + 1
e−aaα+1Rα+1

k−1 (a) → 0, k → ∞,

for each a > 0.

3) One could ask: Does a Riemann–Lebesgue Lemma also hold for the system

{
√

h
(α,β)
k R

(α,β)
k (cos θ)}, which is orthonormal with respect to the weight function

(sin θ
2)

2α+1(cos θ
2)

2β+1? That this cannot be true for α > −1/2 can be seen by an
argument analogous to that at the beginning of the proof of the Lemma: introduce a
corresponding linear functional, estimate its norm from below by considering a neigh-
borhood of x = 1, and apply the uniform boundedness principle. This also shows
(replace (k + 1)α+1/2 by some (k + 1)ε, ε > 0) that a “better” result than that given
in the Lemma, better in the sense that for general f ∈ L(α,β) there is a certain rate
of decrease of the Fourier–Jacobi coefficients f̂(α,β)(k), cannot hold.

4) For Fourier coefficients of a function f ∈ L1(−π, π) it is well known that they
decrease faster for smoother functions (see, e.g., [12, (4.3), p. 45]). This phenomenon
also occurs for Jacobi expansions. Let us illustrate this by considering a special case
of Besov spaces investigated by Runst and Sickel [10] (for α ≥ β ≥ −1/2): Let δ > 0.
We say that f ∈ Bδ

1,∞,α,β if

‖f‖Bδ
1,∞,α,β

:= sup
j∈N0

2jδ
∥∥∥ ∞∑

k=0

f̂(α,β)(k) ϕj(k) h
(α,β)
k R

(α,β)
k (cos θ)

∥∥∥
L(α,β)

< ∞ ,

where ϕ(x) ∈ C∞(R) has compact support in (2j−1, 2j+2) and is identicallly 1 for
2j ≤ x ≤ 2j+1. Then for n ∈ [2j, 2j+1] one obtains

|f̂(α,β)(n)| ≤
∥∥∥ ∞∑

k=0

f̂(α,β)(k) ϕj(k) h
(α,β)
k R

(α,β)
k (cos θ)

∥∥∥
L(α,β)

≤ Cn−δ‖f‖Bδ
1,∞,α,β

uniformly in j. Bavinck [1] introduced Lipschitz spaces based on the generalized
Jacobi translation operator (see [5]). These coincide with the above Besov spaces (see
[1, p. 374] and [10, Remark 15 and Theorem 5] and observe that the domain of the
infinitesimal generator considered by Bavinck is just the domain of the square of the
infinitesimal generator considered by Runst and Sickel).
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5) In the same spirit we can extend the Riemann–Lebesgue Lemma for cosine trans-
forms on the half-axis to Jacobi transforms. For α > −1 and β ∈ R we denote the
underlying space of measurable functions on R+ by

L(α,β)(R+) = {f : ‖f‖L(α,β)(R+) :=
∫ ∞

0
|f(t)|

(
sinh t

)2α+1(
cosh t

)2β+1
dt < ∞} .

Then the Jacobi transform of an L(α,β)(R+) function f is defined by

J (α,β)[f ](τ) =
22(α+β+1)+1/2

Γ(α + 1)

∫ ∞

0
f(t) ϕ(α,β)

τ (t)
(

sinh t
)2α+1(

cosh t
)2β+1

dt,

whenever the integral converges, where ϕ(α,β)
τ (t) is the Jacobi function defined by

ϕ(α,β)
τ (t) = 2F1

[1
2
(ρ + iτ),

1
2
(ρ − iτ); α + 1; −(sinh t)2

]
with ρ = α + β + 1; see, e.g., Koornwinder [9]. Note that J (−1/2,−1/2)[f ] is just
the cosine transform of f , see [9, (3.4)]. This time, one can reduce the problem
to the classical Riemann-Lebesgue Lemma for the cosine transform: for α > −1/2
Koornwinder [9, (2.21)] has shown the following integral representation of Dirichlet–
Mehler type

ϕ(α,β)
τ (t) = 2−α+3/2 Γ(α + 1)

Γ(α + 1/2)Γ(1/2)
1

(sinh t)2α(cosh t)α+β

×
∫ t

0
cos τs (cosh 2t − cosh 2s)α−1/2

2F1

[
α + β, α − β; α +

1
2
;
cosh t − cosh s

2 cosh t

]
ds .

From this integral it follows (cf. [9, p. 150]) that

|ϕ(α,β)
τ (t)| ≤ C(1 + t)e−(α+β+1)t , t, τ ∈ R+ , α > −1/2. (7)

Hence the Jacobi transform of a function f ∈ L(α,β)(R+) exists as a uniformly bounded
function of τ ∈ R+ if α > −1/2 and α + β > −1. Then, by proceeding as in
proof of the Lemma, the Riemann-Lebesgue Lemma for cosine transforms now implies
that J (α,β)[f ](τ) vanishes at infinity when α > −1/2 and α + β > −1. This result
can also be proved by using the density in L(α,β)(R+) of finite linear combinations
of characteristic functions of bounded intervals, [9, (2.10)], (7), and the method
described in Remark 2. This result and the inequality in (7) can be extended to
α = −1/2, α + β > −1 by using the α ↘ −1/2 limit case of the above integral
representation:

ϕ(−1/2,β)
τ (t) = (cosh t)−β−1/2 cos τt

+ (
1
4

− β2)(sinh t)(cosh t)−β−1/2
∫ t

0
cos τs (cosh t + cosh s)−1

× 2F1

[1
2

+ β,
1
2

− β; 2;
cosh t − cosh s

2 cosh t

]
ds .

We intend to consider the general complex parameter case and related problems in
another paper.
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Birkhäuser Verlag, Basel, 1971 (United States Edition published by Academic
Press, New York, 1971).
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