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Abstract. Suppose the fractional integration operator Iσ is generated by
the sequence {(k + 1)−σ} in the setting of Laguerre and Hermite expansions.
Then, via projection formulas, the problem of the norm boundedness of Iσ

is reduced to the well-known fractional integration on the half-line. A corre-
sponding result with respect to the modified Hankel transform is derived and
its connection with the Laguerre fractional integration is indicated.

1 Introduction

The aim of this note is to present a new approach for the derivation of boundedness
properties of fractional integration operators generated by multipliers with respect to
Laguerre and Hermite expansions as well as with respect to modified Hankel trans-
forms. The method of proof consists in reducing the problem to classical fractional
integration via projection formulas as given, e.g., in Askey and Fitch [3] and then
applying weighted norm inequalities for the resulting integral operators as given in
Samko, Kilbas and Marichev [12] and in Andersen and Heinig [1], thus separating
two difficulties: The orthogonal setting is handled via the projection formulas, and
the behavior of classical fractional integration on the half-line in a weighted setting
is essentially known.

Let us mention two different approaches in the case of Laguerre series.
(i) In Gasper, Stempak and Trebels [6] the delicate convolution structure for Laguerre
expansions

∑
akL

α
k is essentially used (thus restricting the parameter α to nonneg-

ative values) to obtain an unweighted fractional integration theorem which is then
extended to power weights by a method due to E. M. Stein and G. Weiss.
(ii) Kanjin and Sato [10] consider Laguerre expansions

∑
akLα

k with respect to the
orthonormalized Laguerre functions, apply the intricate transplantation theorem due
to Kanjin (cf. [10, Theorem A]) to reduce the problem to the case α = 0 and, by
a transplantation theorem between

∑
akL0

k and one-dimensional Fourier series, can
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switch to fractional integration for Fourier series (generated via a multiplier sequence).
The advantage of this method is that negative values of α are also admitted.

The benefits of the present approach are the following: (a) It is elementary; (b)
it improves, e.g., the known fractional integration theorems for Laguerre expansions
in two ways: more power weights are admitted and sharper norm inequalities in the
following sense are derived (σ > 0)

‖
∑

(k + 1)−σakL
α
k‖r . ‖

∑
(k + 1)−σakL

α+σ
k ‖q . ‖

∑
akL

α
k‖p

(the notation A . B is used to indicate that A ≤ c · B with a constant c indepen-
dent of significant quantities; the parameters r, p, σ, α satisfy the standard relation
1/r = 1/p − σ/(α + 1) in the “natural” weight case with respect to the convolu-
tion structure); (c) in principle those other than power weights are admitted; (d)
the method should work for further expansions or integral transforms whenever rel-
evant projection formulas and relevant results on classical fractional integration are
available.

2 Laguerre expansions

We take over the notation from [9] and consider the Lebesgue spaces

Lp
w(γ) =

{
f : ‖f‖Lp

w(γ)
=
(∫ ∞

0

|f(x)e−x/2|pxγ dx
)1/p

< ∞
}

, 1 ≤ p < ∞, γ > −1.

We denote the Laguerre polynomials by Lα
k , α > −1, k ∈ N0 (see [16, p. 100]), and

normalize them by

Rα
k (x) = Lα

k (x)/Lα
k (0), Lα

k (0) = Aα
k =

(
k + α

k

)
=

Γ(k + α + 1)

Γ(k + 1)Γ(α + 1)
.

If γ < p(α + 1)− 1, one can formally expand f ∈ Lp
w(γ) into a Laguerre series

f(x) ∼ (Γ(α + 1))−1
∞∑

k=0

f̂α(k)Lα
k (x), f̂α(k) =

∫ ∞

0

f(x)Rα
k (x)xαe−x dx .

Since the polynomials are dense in these Lp
w(γ)-spaces, we restrict ourselves in the

following to considering polynomials f =
∑

akL
α
k (x) with only finitely many non-zero

coefficients ak. Motivated by the definition of fractional integration for Fourier series
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discussed by Hardy and Littlewood, we define a fractional integral operator Iσ, σ > 0,
for Laguerre expansions by

Iσ(
∞∑

k=0

akL
α
k (x)) =

∞∑
k=0

(k + 1)−σakL
α
k (x) .

In order to use also related fractional integrals, equivalent to Iσ (with respect to the
mapping behavior), we need the idea of multipliers. A sequence m = {mk} is called
a (bounded) multiplier from Lp

w(γ) into Lr
w(γ) , denoted by m ∈ Mp,r

w(γ), if

∥∥∥Tm(

∞∑
k=0

akL
α
k )
∥∥∥

Lr
w(γ)

:=
∥∥∥ ∞∑

k=0

mkakL
α
k

∥∥∥
Lr

w(γ)

≤ C
∥∥∥ ∞∑

k=0

akL
α
k

∥∥∥
Lp

w(γ)

for all polynomials; the smallest constant C for which this holds is called the multiplier
norm ‖m‖Mp,r

w(γ)
which coincides of course with the operator norm of Tm . We mention

that Iσ extends to a bounded operator from Lp
w(γ) to Lp

w(γ) when 0 ≤ αp/2 ≤ γ ≤
α, 1 ≤ p ≤ ∞, (see [6]) or when −1 < γ < (α + 1)p− 1, 1 ≤ p ≤ ∞, and −1 < α ≤
min {1− 2/(3p), 1/3 + 2/(3p)}; this follows from a Corollary due to Poiani [11, p. 11]
and [17, Theorem 3.3]. By [4, 1.18], [9, II, Theorem 3.1] and [17, Theorem 3.3] it is
then clear that, e.g., the multiplier sequences

{ Γ(k + α + 1)

Γ(k + α + σ + 1)

}
k∈N0

, {(kδ + c + 1)−σ/δ}k∈N0 , c > −1 , δ > 0,

generate fractional integral operators on Lp
w(γ) , 1 ≤ p ≤ ∞ , which are equivalent to

the above Iσ. As a consequence, without loss of generality we can work with any of
the fractional integrals generated by the preceding sequences.

Theorem 1. Let α > −1 and 1 < p ≤ r < ∞ . Assume further that 0 < σ <
α + 1, a < (α + 1)/p′, b < (α + 1)/r, a + b ≥ −σ(2α + 1). Then

‖Iσf‖Lr
w(α−br)

. ‖f‖Lp
w(α+ap)

,
1

r
=

1

p
− σ − a− b

α + 1
.

Remark 1. Not only is Theorem 1 proved by a new method, but this method also
extends the parameter range α ≥ 0, a + b ≥ 0 in [6, Theorem 1.1] to α > −1, a + b ≥
−σ(2α + 1). Moreover, the result of Kanjin and Sato [10, Theorem] is completely
recovered without the use of transplantation theorems. We only have to choose a =
α(1/2−1/p), b = α(1/r−1/2); then 1/r = 1/p−σ; the condition a+ b ≥ −σ(2α+1)
causes no new restriction, and the assumptions a < (α + 1)/p′, b < (α + 1)/r, lead to
the restriction of the (p, r)-range as given in [10].
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Remark 2. The proof of Theorem 1 also gives the following result which makes
precise the norm estimates indicated in the Introduction.

Corollary 2. Set 2/q = 1/p+1/r. Then, under the hypotheses of Theorem 1, there
holds

‖
∑

(k + 1)−σakL
α
k‖Lr

w(α−br)
. ‖

∑
(k + 1)−σakL

α+σ
k ‖Lq

w(α+σ)
. ‖

∑
akL

α
k‖Lp

w(α+ap)
.

Proof of Theorem 1. From [3, (3.30) and (3.31)] we have that if α > −1, σ > 0,
then the following projection formulas for Laguerre polynomials hold

xα+σLα+σ
k (x)

Γ(k + α + σ + 1)
=

1

Γ(σ)

∫ x

0

(x− y)σ−1yαLα
k (y) dy

Γ(k + α + 1)
,(1)

e−xLα
k (x) =

1

Γ(σ)

∫ ∞

x

(y − x)σ−1e−yLα+σ
k (y) dy .(2)

On the one hand, we have by (1)(∫ ∞

0

∣∣∣∣∣
∞∑

k=0

Γ(k + α + 1)

Γ(k + α + σ + 1)
akL

α+σ
k (x)e−x/2

∣∣∣∣∣
q

xα+σdx

)1/q

.
(∫ ∞

0

∣∣∣∣∣
∫ x

0

(x− y)σ−1e−(x−y)/2(
∑

akL
α
k (y)yαe−y/2) dy

∣∣∣∣∣
q

x−(α+σ)q/q′dx

)1/q

=: J1 .

Also, by (2),(∫ ∞

0

∣∣∣∣∣
∞∑

k=0

bkL
α
k (x)e−x/2

∣∣∣∣∣
r

xα−brdx

)1/r

.
(∫ ∞

0

∣∣∣∣∣
∫ ∞

x

(y − x)σ−1e−(y−x)/2(
∑

bkL
α+σ
k (y)e−y/2) dy

∣∣∣∣∣
r

xα−brdx

)1/r

=: J2 .

Observing that e−|x−y|/2 ≤ 1, we see that the problem is reduced to finding
weighted Lp-Lq estimates for the Riemann- Liouville fractional integral

Iσ
+h(t) =

1

Γ(σ)

∫ t

0

(t− s)σ−1h(s) ds

and for the Weyl fractional integral

Iσ
−h(t) =

1

Γ(σ)

∫ ∞

t

(s− t)σ−1h(s) ds .
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Convenient norm estimates can be found in the book of Samko, Kilbas and Marichev
[12] from which we now quote Theorem 5.4.

Theorem A. Let σ > 0, p ≥ 1, and p ≤ q ≤ p/(1 − pσ) when 1 ≤ p < 1/σ (in the
case p = 1 the right endpoint p/(1− pσ) is excluded), or p ≤ q < ∞ when p ≥ 1/σ .
Suppose also that −∞ < N < ∞ and M < p−1 when we consider Iσ

+ , or M > σp−1
in the case Iσ

− , and
N + 1

q
=

M + 1

p
− σ .(3)

Then

(

∫ ∞

0

|Iσ
±h(t)|qtNdt)1/q . (

∫ ∞

0

|h(t)|p tMdt)1/p.

In order to estimate J1 choose the parameters N = −(α + σ)q/q′ and M = α(1−
p) + ap in Theorem A. Then the condition M < p− 1 is equivalent to a < (α + 1)/p′;
in the case 1 < p < 1/σ the condition q ≤ p/(1− pσ) is equivalent to σ ≥ 1/p− 1/q.
Furthermore (3) leads to

α + σ + 1

q
=

α + 1

p
+ a .(4)

Thus, if p ≤ q, we have under the above conditions

‖
∑

(k + 1)−σakL
α+σ
k ‖Lq

w(α+σ)
. J1 . ‖

∑
akL

α
k‖Lp

w(α+ap)
.(5)

Similarly, we handle J2 by replacing p, q in Theorem A by q, r, respectively, and
choosing N = α− br, M = α + σ . Then (3) leads to

α + 1

r
− b =

α + σ + 1

q
− σ ,(6)

which in combination with M > σq − 1 gives b < (α + 1)/r. In the case 1 < q < 1/σ
the condition r ≤ q/(1− qσ) is now equivalent to σ ≥ 1/q − 1/r. Thus, if q ≤ r, we
have

‖
∑

bkL
α
k‖Lr

w(α−br)
. J2 . ‖

∑
bkL

α+σ
k ‖Lq

w(α+σ)
.(7)

We can combine (5) and (7) if σ ≥ max{1/p − 1/q, 1/q − 1/r}; the maximum
is assumed with 1/q = (1/p + 1/r)/2, thus, for this choice of q, we have p ≤ q ≤ r
since by hypothesis p ≤ r. Finally, since (4) and (6) lead to the relation between
r, p, α, σ, a, b, as asserted in Theorem 1, we arrive at the condition σ ≥ (1/p −
1/r)/2 = (σ − a − b)/(2α + 2) which implies a + b ≥ −σ(2α + 1). This finishes the
proof of Theorem 1 and its Corollary.

Remark 3. In [1] and [2] there are admitted more general weights than those of
power type as in Theorem A. We note that the conditions in [1] and [2] lead to more
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restrictions (e.g., the order of fractional integration is assumed to be ≤ 1). In the last
years, a number of papers have been published which deal with the precise description
of norm inequalities with two weights for fractional integrals or fractional maximal
functions; the derived characterizations seem to be hard to apply in our situation.

3 Hermite expansions

We follow again [9] and consider for 1 ≤ p < ∞ the Lebesgue space

Lp
w(H) =

{
f : ‖f‖Lp

w(H)
=
(∫ ∞

−∞
|f(x)e−x2/2|pdx

)1/p

< ∞
}

.

The Hermite polynomials (see [16, p. 106])

Hn(x) = (−1)nex2
( d

dx
)ne−x2

, x ∈ R , n ∈ N0 ,

belong to Lp
w(H) ; we associate to f ∈ Lp

w(H) its Hermite expansion

f(x) ∼
∞∑

k=0

f̂H(k)Hk(x) , f̂H(k) = hH
k

∫ ∞

−∞
f(t)Hk(t)e

−t2dt ,

where hH
k = ‖Hk‖−2

L2
w(H)

= (
√

π2kk!)−1. Without loss of generality we can work with

polynomials f in the following, since the polynomials are dense in Lp
w(H). As in the

Laguerre series case we define a fractional integral operator Iσ
H , σ > 0, for Hermite

expansions by (f =
∑

akHk being a polynomial)

Iσ
H(

∞∑
k=0

akHk(x)) =
∞∑

k=0

(k + 1)−σakHk(x) .

This time we derive results on the mapping behavior of Iσ
H by reducing the problem

to the corresponding one for Laguerre expansions. Observe that H2n and H2n+1

are even and odd polynomials, respectively, and that one can uniquely decompose
f ∈ Lp

w(H) into its even and odd parts:

fe(x) =
1

2
(f(x) + f(−x)) , fo(x) =

1

2
(f(x)− f(−x)) .

Then
‖f‖Lp

w(H)
≤ ‖fe‖Lp

w(H)
+ ‖fo‖Lp

w(H)
≤ 2‖f‖Lp

w(H)
,(8)

and for their Hermite coefficients we obtain

(fe)̂H(k) =

{
f̂H(k) if k is even
0 if k is odd

, (fo)̂H(k) =

{
0 if k is even

f̂H(k) if k is odd
.
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Quadratic transformations [16, (5.6.1)] relate the Hermite and the Laguerre polyno-
mials in the following way

H2k(x) = (−1)k22kk!L
−1/2
k (x2) , H2k+1(x) = (−1)k22k+1k!xL

1/2
k (x2) .

As a consequence we have

∞∑
k=0

a2kH2k(x) =

∞∑
k=0

bkL
−1/2
k (x2) , bk = (−1)k22kk!a2k ,

∞∑
k=0

a2k+1H2k+1(x) =
∞∑

k=0

ckxL
1/2
k (x2) , ck = (−1)k22k+1k!a2k+1 .

Therefore,

‖(Iσ
Hf)e‖Lr

w(H)
. ‖

∞∑
k=0

(2k + 1)−σbkL
−1/2
k ‖Lr

w(−1/2)
. ‖

∞∑
k=0

bkL
−1/2
k ‖Lp

w(−1/2)

. ‖fe‖Lp
w(H)

,
1

r
=

1

p
− 2σ ,

by Theorem 1. Similarly,

‖(Iσ
Hf)o‖Lr

w(H)
. ‖

∞∑
k=0

(2k + 2)−σck L
1/2
k ‖Lr

w((r−1)/2)

. ‖
∞∑

k=0

ck L
1/2
k ‖Lp

w((p−1)/2)
. ‖fo‖Lp

w(H)
,

1

r
=

1

p
− 2σ ,

by Theorem 1 with a = 1/2 − 1/p, b = 1/r − 1/2 and a + b = 1/r − 1/p ≥ −2σ
by hypothesis. On account of (8) we can combine these two estimates to obtain the
following result.

Theorem 3. Let 1 < p < r < ∞ and 0 < σ < 1/2. Then

‖
∞∑

k=0

(k + 1)−σakHk‖Lr
w(H)

. ‖
∞∑

k=0

akHk‖Lp
w(H)

,
1

r
=

1

p
− 2σ .
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4 Hankel transforms

Consider the weighted Lebesgue spaces Lp
v(γ) , 1 ≤ p < ∞, γ > −1, consisting of those

measurable functions on (0,∞) which satisfy

‖f‖Lp
v(γ)

=
( ∫ ∞

0

|f(t)|pt2γ+1dt
)1/p

< ∞ .

For fixed α ≥ −1/2 the (modified) Hankel transform of f ∈ L1
v(α) is defined by

Hαf(τ) =

∫ ∞

0

Jα(τt)

(τt)α
f(t) t2α+1dt, τ > 0 .

Here Jα denotes the Bessel function of the first kind of order α (see [16, (1.71.1)]).
We mention the connection with the multidimensional Fourier transform: If α =
(n−2)/2, n ∈ N, the Hankel transform Hαf(τ) coincides with the Fourier transform
of the radial extension f(|x|) to Rn of f(t). One convenient substitute of the set
of polynomials in the Laguerre case is now described by Hα(C∞

0 ), the set of Hankel
transforms of C∞-functions with compact support in (0,∞) , since by [15, Theorem
4.7] we have that Hα(C∞

0 ) is dense in Lp
v(α+γ) for γ > −1/2, 1 < p < ∞.

We note that the Hankel transform is self inverse on Hα(C∞
0 ), i.e.,

Hα[Hαf ] = f , f ∈ Hα(C∞
0 ) .

Motivated by the definition of the Riesz fractional integral on Lp(Rn) via its Fourier
symbol, we define a fractional integral operator on Hα(C∞

0 ) by

Iσf = Hα(τ−σHα(g)(τ)) .

To obtain a norm estimate for Iσ we proceed as in the Laguerre series case and work
with the parameters of the Hankel transform. We slightly extend Theorems 3.1 and
3.2 of [15] and interpret them in a new way. In the “natural” weight case γ = α, we
can at once conclude from [15, Theorem 3.1/2] that

‖Iσf‖Lr
v(α)

. ‖f‖Lp
v(α)

,
1

r
=

1

p
− σ

2(α + 1)
, f ∈ Hα(C∞

0 ) .

For α = (n−2)/2 this reduces to the well-known result for Riesz-potentials restricted
to the radial functions of Lp(Rn). More generally there holds the following.

Theorem 4. Let α ≥ −1/2 and σ > 0, 1 < p ≤ q ≤ r < ∞, 2/q = 1/p + 1/r.
Assume further that a < 2(α + 1)/p′, b < 2(α + 1)/r and a + b ≥ −σ(2α + 1). Then

‖Iσf‖Lr
v(α−br/2)

. ‖Hα+σ/2(Hα(Iσf))‖Lq
v(α+σ/2)

. ‖f‖Lp
(α+ap/2)

,
1

r
=

1

p
− σ − a− b

2(α + 1)
.
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For the proof of Theorem 4 we observe that the relevant projection formulas
for the Bessel functions are given by [5, 8.5(32) and 8.5(33)]. Formula [5, 8.5(32)]
leads to [15, (3.9)] which, when taking g = Hα+σ(Hα(I2σf)), may be rewritten in the
form

I2σf(t) = cα,σ

∫ ∞

t

s(s2 − t2)σ−1Hα+σ(Hα(I2σf))(s) ds , f ∈ Hα(C∞
0 ),

provided α ≥ −1/2, σ > 0. Also for these parameters, formula [5, 8.5(33)] yields (all
double integrals are absolutely convergent – see [15, p. 57])

Hα+σ(Hα(I2σf))(t) =
c∗α,σ

t2(α+σ)

∫ t

0

(t2 − s2)σ−1f(s)s2α+1 ds , σ > 0, f ∈ Hα(C∞
0 ) .

Variable changes lead to

‖Hα+σ(Hα(I2σf))‖Lq
v(α+σ)

.
(∫ ∞

0

∣∣∣ ∫ t

0

(t− s)σ−1f(s
1
2 ) sαds

∣∣∣qt−(α+σ)q/q′dt

)1/q

=: I1 ,

‖I2σf‖Lr
v(α−br/2)

.
(∫ ∞

0

∣∣∣ ∫ ∞

t

(s− t)σ−1Hα+σ(Hα(I2σf))(s
1
2 ) ds

∣∣∣rt−br/2+αdt

)1/r

=: I2 .

We are now in a situation to apply Theorem A and follow the pattern of the proof
to Corollary 2. Concerning I1 choose N = −(α + σ)q/q′, M = (1− p)α + ap/2; the
restrictions σ ≥ 1/p−1/q, a/2 < (α+1)/p′ and (α+σ +1)/q = (α+1)/p+a/2 then
result from Theorem A. Analogously, when dealing with I2, we obtain the restrictions
σ ≥ 1/q−1/r, b/2 < (α+1)/r and (α+σ +1)/q = (α+1)/r +σ− b/2. Taking again
the maximum over the lower bounds of σ leads to a+ b ≥ −2σ(2α +1). Finally, since
in the proof we worked with I2σ instead of Iσ, we only have to replace σ by σ/2 to
establish Theorem 4.

Remark 4. Let us apply Theorem 4 to fractional integration of order σ > 0 with
respect to the classical Hankel transform given by

Iσf = Hα(τ−σHα(f)(τ)) , Hαf(τ) =

∫ ∞

0

(sτ)
1
2 Jα(sτ)f(s) ds .

Here we may restrict ourselves to elements of the (self-explaining) set Hα(C∞
0 ) which

is dense in Lp(0,∞), 1 < p < ∞ (see [15, Cor. 4.8]). If we choose in Theorem 4 the
parameters a = (2α + 1)(1/2− 1/p), b = (2α + 1)(1/r − 1/2), then we arrive at the
following result (‖ · ‖p denotes the standard Lp(0,∞)-norm ).
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Corollary 5. Let α ≥ −1/2 and 1 < p < r < ∞. Then, for all f ∈ Lp(0,∞) there
holds

‖Iσf‖r . ‖f‖p ,
1

r
=

1

p
− σ .

An alternative proof of Corollary 5 in the spirit of Kanjin and Sato would be to
prove the assertion for the cosine transform (thus for α = −1/2 which is classical) and
then use Guy’s transplantation theorem for the Hankel transform (cf. [15, p. 53]).

Remark 5. Obviously, Theorem 4 and its proof are quite analogous to the Laguerre
expansion case. That this is not accidental may be seen by a result due to Stempak
[13, Theorem 1.1]. Though Stempak’s theorem is only formulated for the case r = p
its proof actually shows the following.

Theorem B. Let 1 ≤ p ≤ r < ∞ and α > −1. Assume that m is a function on R+ ,
which is continuous except on a set of Lebesgue measure zero. Then

‖m‖Mp,r(Hα) . lim inf
ε→0+

‖εσ{m(εk1/2)}k∈N0‖Mp,r
w(α)

,
1

r
=

1

p
− σ

2(α + 1)
,(9)

whenever the right hand side is finite. Here the (modified ) Hankel multiplier norm is
given by

‖m‖Mp,r(Hα) = inf{C : ‖Hα(mHαf)‖Lr
v(α)

≤ C ‖f‖Lp
v(α)

, f ∈ Hα(C∞
0 )} .

Observe that the relation 1/r = 1/p−σ/2(α+1) reflects the mapping behavior of
a fractional integral operator of order σ/2 in the Laguerre setting. In order to apply
Theorem B we face the problem to ensure that the right hand side of (9) is bounded.
Here the case 1 < p < r < 2 is the essential one. For, by duality, it is equivalent to
the problem for 2 < p < r < ∞; if 1 < p ≤ 2 ≤ q < ∞ we observe that on account of
M2,2

w(α) = `∞ we have (see [6, p. 69]) that

‖εσ{m(εk1/2)}k∈N0‖Mp,r
w(α)

. ‖{εσkσ/2m(εk1/2)}k∈N0‖`∞ ,
1

r
=

1

p
− σ

2(α + 1)
,

which is an easy to verify condition.

Now, in the case 1 < p < r < 2, the extension of [6, Cor. 1.2] from α ≥ 0 to
α ≥ −1/2 is obvious by Theorem 1 for a = b = 0; note that Corollaries 1.2 and 4.5 in
[14] give sufficient Mp,p

w(α)-multiplier criteria for all α > −1 and that the assumption

a + b = 0 ≥ −σ(2α + 1) leads to the restriction α ≥ −1/2. Thus, using the notation
s = [α + 1] + 2, ∆mk = mk −mk+1, ∆s = ∆ ∆s−1, and choosing m(τ) = (1 + τ 2)−σ/2

in Theorem B we can estimate as follows:

sup
ε>0

‖εσ{m(εk1/2)}k∈N0‖2
Mp,r

w(α)
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. sup
ε>0

(
‖εσkσ/2{m(εk1/2)}k∈N0‖2

∞

+ sup
N∈N

2N∑
k=N

|(k + 1)s+σ/2∆sεσm(εk1/2)|2(k + 1)−1
)

. sup
ε>0

(
O(1) + sup

N>0

∫ 2N

N

∣∣∣τ s+σ/2
( d

dτ

)s εσ

(1 + ε2t)σ/2

∣∣∣2dt
)

,

the latter inequality being valid on account of a slight variation of [7, (5.1)]. A
straightforward computation at once yields that the last integral is uniformly bounded
in ε > 0. Therefore, by Theorem B, the mapping behavior of the fractional integra-
tion, generated by the (modified) Hankel symbol (1 + τ)−σ, can be deduced from
the corresponding one for fractional integration of order σ/2 in the Laguerre series
setting, i.e., from Theorem 1 in the case a = b = 0.

Of course, when 1 < p < r < ∞, α ≥ −1/2,

‖Hα((1 + τ)−σHα(g)(τ))‖Lr
v(α)

. ‖f‖Lp
v(α)

,
1

r
=

1

p
− σ

2(α + 1)
,

also follows from Theorem 4, since τσ/(1 + τ)σ generates a bounded operator on all
Lp

v(α)-spaces, 1 ≤ p ≤ ∞.
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