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19. Uniform bounds for shifted Jacobi multiplier
sequences. For Fourier series the following is immediate:
Suppose the real or complex sequence {my} generates a
bounded operator on LP(T), 1 < p < o0, i.e., for polyno-
mial f
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then one has for the shifted sequence {my+;}rez that

sup [[{mii s} ey < C lmllasnery , 1<p<00. (1)
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Looking at cosine expansions on LP(0, 7) one easily derives
the analog of (1) via the addition formula

cos(k =+ )0 = cos kf cos j0 F sin kO sin j6
provided the periodic Hilbert transform is bounded, i.e.,

for 1 < p < co. More generally, by Muckenhoupt’s trans-
plantation theorem [2, Theorem 1.6],
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where P,ga’ﬁ) are the Jacobi polynomials, qb,(ca’ﬁ) (cosB) are
the orthonormalized Jacobi functions with respect to d#,
and
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Wa,8,p(6) = sin 5

Therefore, the above argument for cosine expansions also
applies to Jacobi expansions provided the periodic Hilbert
transform is bounded with respect to the weight function
Wa,8,p ; hence, the analog of (1) holds for Jacobi expansions
when
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(i) Can the above p-range be extended? By Muckenhoupt
[2, (1.3)], a fixed shift is bounded for all p, 1 < p < c0.

(ii) Consider the corresponding problem for Laguerre ex-
pansions (for the appropriate setting see [1]); a fixed shift
is easily seen to be bounded for all p > 1.

Both questions are of course trivial for p = 2 since {*° =
M? by Parseval’s formula.
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