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Abstract. In 1965 K. de Leeuw [3] proved among other things in the Fourier
transform setting: If a continuous function m(ξ1, . . . , ξn) on Rn generates a bounded
transformation on Lp(Rn), 1 ≤ p ≤ ∞, then its trace m̃(ξ1, . . . , ξk) =
m(ξ1, . . . , ξk, 0, . . . , 0), k < n, generates a bounded transformation on Lp(Rk). In
this paper, the analogous problem is discussed in the setting of Laguerre expansions
of different orders.
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1 Introduction

The purpose of this paper is to discuss the question: suppose {mk}k∈N0 generates
a bounded transformation with respect to a Laguerre function expansion of order α
on some Lp–space, does it also generate a corresponding bounded map with respect
to a Laguerre function expansion of order β ? To become more precise let us first
introduce some notation. Consider the Lebesgue spaces

Lp
w(γ) = {f : ‖f‖Lp

w(γ)
= (

∫ ∞

0
|f(x)e−x/2|pxγ dx)1/p < ∞} , 1 ≤ p < ∞,

L∞
w(γ) = {f : ‖f‖L∞

w(γ)
= ess supx>0|f(x)e−x/2| < ∞}, p = ∞,

where γ > −1. Let Lα
n(x), α > −1, n ∈ N0, denote the classical Laguerre polynomi-

als (see Szegö [15, p. 100]) and set

Rα
n(x) = Lα

n(x)/Lα
n(0), Lα

n(0) = Aα
n =

(
n + α

n

)
=

Γ(n + α + 1)
Γ(n + 1)Γ(α + 1)

.
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Associate to f its formal Laguerre series

f(x) ∼ (Γ(α + 1))−1
∞∑

k=0

f̂α(k)Lα
k (x),

where the Fourier Laguerre coefficients of f are defined by

f̂α(n) =
∫ ∞

0
f(x)Rα

n(x)xαe−x dx (1)

(if the integrals exist). A sequence m = {mk}k∈N0 is called a (bounded) multiplier
from Lp

w(γ) into Lq
w(δ), notation m ∈ Mp,q

α; γ, δ, if

‖
∞∑

k=0

mkf̂α(k)Lα
k‖Lq

w(δ)
≤ C‖

∞∑
k=0

f̂α(k)Lα
k‖Lp

w(γ)

for all polynomials f ; the smallest constant C for which this holds is called the
multiplier norm ‖m‖Mp,q

α; γ, δ
. For the sake of simplicity we write Mp,q

α; γ := Mp,q
α; γ, γ if

γ = δ and, if additionally p = q, Mp
α; γ := Mp,p

α; γ .

We are mainly interested in the question: when is Mp,q
α; α continuously embedded in

Mp,q
β; β:

Mp,q
α; α ⊂→ Mp,q

β; β , 1 ≤ p ≤ q ≤ ∞ ?

The Plancherel theory immediately yields

l∞ = M2
α;α = M2

β;β, α, β > −1.

A combination of sufficient multiplier conditions with necessary ones indicates which
results are to be expected. To this end, define the fractional difference operator ∆δ

of order δ by

∆δmk =
∞∑

j=0
A−δ−1

j mk+j

(whenever the series converges), the classes wbvq,δ , 1 ≤ q ≤ ∞, δ > 0, of weak
bounded variation (see [5]) of bounded sequences which have finite norm ‖m‖q,δ ,
where

‖m‖q,δ := sup
k

|mk| + sup
N∈N0

( 2N∑
k=N

|(k + 1)δ∆δmk|q 1
k + 1

)1/q

, q < ∞,

‖m‖∞,δ := sup
k

|mk| + sup
N∈N0

|(k + 1)δ∆δmk| , q = ∞.

Observing the duality (see [14])

Mp
α; γ = Mp′

α; αp′−γp′/p , −1 < γ < p(α + 1) − 1, 1 < p < ∞, (2)
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where 1/p + 1/p′ = 1, we may restrict ourselves to the case 1 < p < 2. The Corollary
1.2 b) in [14] gives the embedding

Mp
α; α ⊂→ wbvp′,s, s = (2α + 2/3)(1/p − 1/2), α > −1/3, (3)

when (2α + 2)(1/p − 1/2) > 1/2. Theorem 5 in [5] gives the first embedding in

wbvp′,s ⊂→ wbv2,s ⊂→ Mp
β; β,

whereas the last one follows from Corollaries 1.2 and 4.5 in [14] provided s > max{(2β+
2)(1/p − 1/2), 1}, β > −1. Hence, choosing γ = α in (2), we obtain

Proposition 1.1 Let 1 < p < ∞ and α be such that (2α+2/3)|1/p−1/2| > 1. Then

Mp
α; α ⊂→ Mp

β; β , −1 < β < α − 2/3.

In the same way we can derive a result for Mp,q–multipliers. The necessary condition
in [6, Cor. 1.3] can easily be extended in the sense of [6, Cor. 2.5 b)] to

sup
k

|(k + 1)σmk| + sup
n

(
2n∑

k=n

|(k + 1)σ+s∆smk|q′
/k)1/q′ ≤ C‖m‖Mp,q

α; α
,

where α > −1/3, 1/q = 1/p − σ/(α + 1), 1 < p < q < 2, (α + 1)(1/q − 1/2) > 1/4,
and s = (2α + 2/3)(1/q − 1/2) > 0. Using this and the sufficient condition for
Mp,q

β; β–multipliers given in [4, Cor. 1.2], which is proved only for β ≥ 0, we obtain

Mp,q
α; α ⊂→ Mp,q

β; β , 0 ≤ β < α − 2/3, (2α + 2/3)(1/q − 1/2) > 1, 1 < p < q < 2.

In this context let us mention that the same technique yields for 1 < p, q < 2

Mp
α; α ⊂→ M q

β; β , (2α + 2/3)(1/p − 1/2) > max{(2β + 2)(1/q − 1/2), 1}. (4)

This embedding is in so far interesting as it allows to go from p, 1 < p < 2, to
q 6= p, 1 < q < 2, connected with a loss in the size of β if q < p or a gain in β if
1 < p < q < 2 ; e.g.

M
4/3
10; 10 ⊂→ M q

5; 5 , 1.08 ≤ q ≤ 2, or M
8/7
2; 2 ⊂→ M q

4; 4 , 3/2 ≤ q ≤ 2.

Improvements of (4) can be expected by better necessary conditions and/or better
sufficient conditions; but this technique cannot give something like

Mp
α; α ⊂→ M q

β; β, (α + 1)(1/p − 1/2) > (β + 1)(1/q − 1/2), 1 < p, q < 2,
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which is suggested by (4) when choosing “large” α with p near 2 since then the number
4(1/p−1/2)/3, which describes the smoothness gap between the necessary conditions
and the sufficient conditions in [14, Cor. 1.2], is “negligible”.

Concerning the general problem “When does Mp,q
α; γ1, δ1

⊂→ Mp,q
β; γ2, δ2

hold?”,
we mention results in Stempak and Trebels [14, Cor. 4.3]: For 1 < p < ∞ there holds

Mp
β;βp/2+δ = Mp

0;δ if
{ −1 − βp/2 < δ < p − 1 + βp/2 , −1 < β < 0 ,

−1 < δ < p − 1 , 0 ≤ β,

which for δ = 0 contains half of Kanjin’s [9] result and for δ = p/4−1/2 Thangavelu’s
[16]. In particular, there holds for −1 < β < α, 1 < p < ∞,

Mp
β; β = Mp

β; βp/2+βp(1/p−1/2) = Mp
α; αp/2+βp(1/p−1/2) , (2β + 2)|1/p − 1/2| < 1. (5)

These results are based on Kanjin’s [9] transplantation theorem and its weighted
version in [14]. The latter gives further insight into our problem in so far as it implies
that the restriction β < α − 2/3 in Proposition 1.1 is not sharp.
To this end we first note that the following extension of Corollary 4.4 in [14] holds

wbv2,s ⊂→ Mp
α; αp/2+η(p/2−1), 0 ≤ η ≤ 1, 1 < p ≤ 2, s > 1/p.

(For the proof observe that for α = 0 the parameter γ = η(p/2 − 1), 0 ≤ η ≤ 1, is
admissible in [14, Theorem 1.1] and then follow the argumentation of [14, Cor. 4.4].)
This combined with (3) yields for s = (2α + 2/3)(1/p − 1/2) > 1/p

Mp
α; α ⊂→ wbv2,s ⊂→ Mp

α; αp/2+p/2−1 , 1 < p ≤ 2, α > (p + 1)/(6 − 3p).

Thus, by interpolation with change of measure,

Mp
α; α ⊂→ Mp

α; αp/2+δ , p/2 − 1 ≤ δ ≤ α − αp/2, α > (p + 1)/(6 − 3p).

Since (5) gives
Mp

α; αp/2+βp(1/p−1/2) = Mp
β; β

we arrive at

Proposition 1.2 Let 1 < p ≤ 2 and α > (p + 1)/(6 − 3p). Then

Mp
α; α ⊂→ Mp

β; β , (2β + 2)(1/p − 1/2) < 1, −1 < β < α.

The first restriction on β is equivalent to β < (2p − 2)/(2 − p). This combined with
the restriction on α gives α − β > (7 − 5p)/(6 − 3p), the latter being decreasing in p
and taking the value 2/3 at p = 1. Hence Proposition 1.2 is an improvement of the
previous one for all 1 < p < 2 provided (p + 1)/(6 − 3p) < α ≤ (2p − 2)/(2 − p).
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For big α’s, Proposition 1.1 is certainly better. If in the transplantation theorem in
[14] higher exponents could be allowed in the power weight – which is possible in the
Jacobi expansion case as shown by Muckenhoupt [12] – the technique just used would
give the embedding when −1 < β < α, 1 < p < 2, and α > (p + 1)/(6 − 3p).
Summarizing, it is reasonable to

conjecture Mp,q
α; α ⊂→ Mp,q

β; β, −1 < β < α, 1 ≤ p ≤ q ≤ ∞.

Apart from the above fragmentary results, so far we can only prove the conjecture
in the extreme case when q = ∞ and β ≥ 0; the latter restriction arises from the
fact that we have to make use of the twisted Laguerre convolution (see [7]) which is
proved till now only for Laguerre polynomials Lα

n(x) with α ≥ 0. Our main result is

Theorem 1.3 If 1 ≤ p ≤ ∞, then

Mp,∞
α; α ⊂→ Mp,∞

β; β , 0 ≤ β < α.

Remarks. 1) One could speculate that an interpolation argument applied to

M2
α; α = M2

β; β , M∞
α; α = M1

α; α ⊂→ M1
β; β = M∞

β; β , β < α,

could give the open case Mp
α; α ⊂→ Mp

β; β , 1 < p < 2. In this respect we mention a
result of Zafran [17, p. 1412] for the Fourier transform pointed out to us by A. Seeger:

Denote by Mp(R) the set of bounded Fourier multipliers on Lp(R) and by
M∧(R) the set of Fourier transforms of bounded measures on R. Then
Mp(R), 1 < p < 2, is not an interpolation space with respect to the pair
(M∧(R), L∞(R)).

Thus de Leeuw’s result mentioned at the beginning cannot be proved by interpolation.

2) It is perhaps amazing to note that the wbv–classes do not play only an auxiliary
role in dealing with the above formulated general problem. In the framework of one-
dimensional Fourier transforms/series this was shown by Muckenhoupt, Wheeden,
and Wo-Sang Young [13]. That this phenomenon also occurs in the framework of
Laguerre expansions can be seen from the following two theorems.

Theorem 1.4 If α > −1, α 6= 0, then

wbv2,1 ⊂→ M2
α; α+1 .

In the case −1 < α < 0 the multiplier operator is defined only on the subspace
{f ∈ L2

w(α+1) : f̂α(0) = 0}.
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Theorem 1.5 If α > −1, then

M2
α; α+1 ⊂→ wbv2,1 .

A combination of these two results leads to

M2
α; α+1 = M2

β; β+1 = wbv2,1 , α, β > −1, α, β 6= 0, (6)

and a combination with [14, (19)] gives

M2
α; α+1 ⊂→ Mp

α; α , α ≥ 0, (2α + 2)/(α + 1) < p ≤ 2.

2 Proof of Theorem 1.3

Theorem 1.3 is an immediate consequence of the combination of the following two
theorems.

Theorem 2.1 Let f ∈ Lp
w(α) with α > −1 when 1 ≤ p < ∞ and α ≥ 0 when p = ∞.

Then there exists a function g ∈ Lp
w(β), −1 < β < α, with

g(x) ∼ (Γ(β + 1))−1
∞∑

k=0

f̂α(k)Lβ
k(x), ‖g‖Lp

w(β)
≤ C‖f‖Lp

w(α)
.

Proof

First let 1 ≤ p < ∞ and, without loss of generality, let f be a polynomial (these are
dense in Lp

w(α)). We recall the projection formula (3.31) in Askey and Fitch [2]

e−xLβ
n(x) =

1
Γ(α − β)

∫ ∞

x
(y − x)α−β−1e−yLα

n(y) dy, −1 < β < α.

Then the following computations are justified.

‖g‖Lp
w(β)

= C

(∫ ∞

0
|

∞∑
k=0

f̂α(k)Lβ
k(x)e−x/2|pxβdx

)1/p

= C

(∫ ∞

0

∣∣∣∣∣
∫ ∞

x
(y − x)α−β−1e−y

∞∑
k=0

f̂α(k)Lα
k (y) dy

∣∣∣∣∣
p

xβexp/2dx

)1/p

≤ C
∫ ∞

1
(t − 1)α−β−1

(∫ ∞

0
|∑

k

f̂α(k)Lα
k (xt)xα−β+β/pe−x(t−1/2)|pdx

)1/p

dt

6



after a substitution and application of the integral Minkowski inequality. Additional
substitutions lead to

‖g‖Lp
w(β)

≤ C
∫ ∞

0
sα−β−1(s + 1)β/p′−α−1/p ×(∫ ∞

0
|∑

k

f̂α(k)Lα
k (y)e−y/2y(α−β)/p′

e−ys/2(s+1)|pyαdy

)1/p

ds

≤ C
∫ ∞

0
s(α−β)/p−1(s + 1)−(α+1)/p

(∫ ∞

0
|∑

k

f̂α(k)Lα
k (y)e−y/2|pyαdy

)1/p

ds,

where we used the inequality y(α−β)/p′
e−ys/2(s+1) ≤ C((s + 1)/s)(α−β)/p′ . Since −1 <

β < α it is easily seen that the outer integration only gives a bounded contribution.
If f ∈ L∞

w(α) then |(k +1)−1/2f̂α(k)| ≤ C‖f‖L∞
w(α)

by [10, Lemma 1] and, therefore, the
Abel-Poisson means of an arbitrary f ∈ L∞

w(α) can be represented by

Prf(x) = (Γ(α + 1))−1
∑
k

rkf̂α(k)Lα
k (x), 0 ≤ r < 1, x ≥ 0,

and, by the convolution theorem in Görlich and Markett [7, p. 169],

‖Prf‖L∞
w(α)

≤ C‖f‖L∞
w(α)

, 0 ≤ r < 1, α ≥ 0.

A slight modification of the argument in the case 1 ≤ p < ∞ shows that

‖gr‖L∞
w(β)

:= ‖(Γ(β + 1))−1
∑
k

rkf̂α(k)Lβ
k‖L∞

w(β)
≤ C‖Prf‖L∞

w(α)
≤ C‖f‖L∞

w(α)
.

By the weak∗ compactness there exists a function g ∈ L∞
w(β) with ĝβ(k) = f̂α(k)

and ‖g‖L∞
w(β)

≤ lim infk→∞ ‖grk
‖L∞

w(β)
for a suitable sequence rk → 1−; hence also the

assertion in the case p = ∞.

Theorem 2.2 For α ≥ 0 there holds
i) M1,p

α; α = Mp′,∞
α; α = (Lp

w(α))̂ , 1 < p ≤ ∞,

ii) M1,1
α; α = M∞,∞

α; α = {m = {mk}k∈N0 : ‖Pr(m)‖L1
w(α)

= O(1), r → 1−},
where Pr(m)(x) = (Γ(α + 1))−1∑

k rkmkL
α
k (x).

Proof

The first equalities in i) and ii) are the standard duality statements. Let us briefly
indicate the second equalities (which are also more or less standard).
If m = {mk}k∈N0 are the Fourier Laguerre coefficients of an Lp

w(α)–function, 1 < p ≤
∞, or in the case p = 1 of a bounded measure with respect to the weight e−x/2xα, then
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Young’s inequality in Görlich and Markett [7] (or a slight extension of it to measures
in the case p = 1) shows that m ∈ Mp′,∞

α;α .
Conversely, associate formally to a sequence m = {mk} an operator Tm by

Tmf(x) ∼ (Γ(α + 1))−1
∞∑

k=0

mkf̂α(k)Lα
k (x). (7)

Then, in essentially the notation of Görlich and Markett [7],

Tm(Prf)(x) = Pr(m) ∗ f(x) =
∫ ∞

0
T α

x (Pr(m)(y))f(y)e−yyαdy,

where Tα
x is the Laguerre translation operator. If ‖f‖

Lp′
w(α)

= 1 then

‖Tm(Prf)‖L∞
w(α)

≤ ‖m‖
Mp′,∞

α; α
‖Prf‖

Lp′
w(α)

≤ C‖m‖
Mp′,∞

α; α
,

and hence, by the converse of Hölder’s inequality,

sup
‖f‖

L
p′
w(α)

=1

∣∣∣∣∫ ∞

0
T α

x (Pr(m)(y))e−y/2yα/pf(y)e−y/2yα/p′
dy
∣∣∣∣

= ‖T α
x (Pr(m))‖Lp

w(α)
≤ C‖m‖

Mp′,∞
α; α

for x ≥ 0, 0 ≤ r < 1. In particular, for x = 0 we obtain

‖Pr(m)‖Lp
w(α)

≤ C‖m‖
Mp′,∞

α; α
, 0 ≤ r < 1.

Now weak∗ compactness gives the desired converse embedding.

3 Proof of Theorems 1.4 and 1.5

The proof relies heavily on the Parseval formula

1
Γ(α + 1)

∞∑
k=0

Aα
k |f̂α(k)|2 =

∫ ∞

0
|f(x)e−x/2|2xαdx (8)

and its extension
∞∑

k=0

Aα+λ
k |∆λf̂α(k)|2 ≈

∫ ∞

0
|f(x)e−x/2|2xα+λdx, λ ≥ 0, (9)

which is a consequence of the formula

∆λf̂α(k) = Cα,λf̂α+λ(k) (10)
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(see e.g. the proof of Lemma 2.1 in [6]). For the proof of Theorem 1.4 we further
need the following discrete analog of the p = 2 case of a weighted Hardy inequality
in Muckenhoupt [11] whose proof can at once be read off from [11] by replacing the
integrals there by sums and using the fact that

a ≤ 2(a + b)1/2[(a + b)1/2 − b1/2]

when a, b ≥ 0; also see the extensions in [1, Sec. 4].

Lemma 3.1 Let {uk}k∈N0 , {vk}k∈N0 be non-negative sequences (if vk = 0 we set
v−1

k = 0). Then

a)
∞∑

k=0

∣∣∣ k∑
j=0

aj

∣∣∣2uk ≤ C sup
N

( ∞∑
k=N

uk

N∑
k=0

v−1
k

) ∞∑
j=0

|aj|2vj.

b)
∞∑

k=0

∣∣∣ ∞∑
j=k

aj

∣∣∣2uk ≤ C sup
N

( N∑
k=0

uk

∞∑
k=N

v−1
k

) ∞∑
j=0

|aj|2vj.

Proof of Theorem 1.4. Using (9) and the operator Tm defined in (7), we obtain∫ ∞

0
|Tmf(x)e−x/2|2xα+1dx ≈

∞∑
k=0

Aα+1
k |∆(mkf̂α(k))|2.

Since
∆(mkf̂α(k)) = mk∆f̂α(k) + f̂α(k + 1)∆mk (11)

we first observe that
∞∑

k=0

Aα+1
k |mk|2|∆f̂α(k)|2 ≤ ‖m‖2

∞
∞∑

k=0

Aα+1
k |∆f̂α(k)|2 ≤ C‖m‖2

∞‖f‖2
L2

w(α+1)
.

To dominate the term containing ∆mk we deduce from (8) that for α ≥ 0 the Fourier
Laguerre coefficients tend to zero as k → ∞. Hence

∞∑
k=0

Aα+1
k |f̂α(k + 1)∆mk|2 =

∞∑
k=0

Aα+1
k |∆mk|2

∣∣∣ ∞∑
j=k+1

∆f̂α(j)
∣∣∣2 =: I.

In order to apply Lemma 3.1 b), we choose uk = Aα+1
k |∆mk|2 and vk = Aα+1

k , and
observe that when M ∈ N, 2M−1 ≤ N < 2M , we have that

( N∑
k=0

uk

∞∑
k=N

v−1
k

)
≤ C(N + 1)−α

M∑
j=0

2j+1−2∑
k=2j−1

(k + 1)|∆mk|2 Aα+1
k

k + 1

≤ C(N + 1)−α
M∑

j=0
(2j)α‖m‖2

2,1 ≤ C‖m‖2
2,1

9



uniformly in N if α > 0. Then Lemma 3.1 b) gives

I ≤ C‖m‖2
2,1

∞∑
j=0

Aα+1
j |∆f̂α(j)|2 ≤ C‖m‖2

2,1‖f‖2
L2

w(α+1)

by (9). Thus there remains to consider the case −1 < α < 0. For the same choice of
uk and vk one easily obtains

( ∞∑
k=N

uk

N∑
k=0

v−1
k

)
≤ C‖m‖2

2,1 .

Now assume that f̂(0) = 0. Then we have

∞∑
k=0

Aα+1
k |f̂α(k + 1)∆mk|2 =

∞∑
k=0

Aα+1
k |∆mk|2

∣∣∣ k∑
j=0

∆f̂α(j)
∣∣∣2 ≤ C‖m‖2

2,1‖f‖2
L2

w(α+1)
,

where the last estimate follows by Lemma 3.1 a); thus Theorem 1.4 is established.

The proof of Theorem 1.5 is essentially contained in [6]. As in [6], consider a
monotone decreasing C∞-function φ(x) with

φ(x) =
{

1 if 0 ≤ x ≤ 2
0 if x ≥ 4

, φi(x) = φ(x/2i).

Then the φi(k) are the Fourier Laguerre coefficients of an L2
w(α+1)-function Φ(i) with

norm ‖Φ(i)‖L2
w(α+1)

≤ C (2i)α/2 and

2i+1∑
k=2i

Aα+1
k |∆mk|2 =

2i+1∑
k=2i

Aα+1
k |∆(mkφi(k))|2 ≤

2i+2∑
k=0

Aα+1
k |∆(mkφi(k))|2

≤ C‖TmΦ(i)‖2
L2

w(α+1)
≤ C‖m‖2

M2
α; α+1

‖Φ(i)‖2
L2

w(α+1)
≤ C2iα‖m‖2

M2
α; α+1

.

This immediately leads to

‖m‖∞ +

2i+1∑
2i

|(k + 1)∆mk|2 1
k + 1

1/2

≤ C‖m‖M2
α; α+1

,

uniformly in i, since by [6, (10)] there holds ‖m‖∞ ≤ C‖m‖M2
α; α+1

; thus Theorem 1.5
is established.

Remark. 3) (Added on Aug. 10, 1994) The characterization (6) can easily be
extended to

M2
α,α+l = wbv2,l, α > −1, α 6= 0, . . . , l − 1, l ∈ N. (12)
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In the case α < l − 1 the multiplier operator is defined only on the subspace {f ∈
L2

w(α+l) : f̂α(k) = 0, 0 ≤ k < (l − 1 − α)/2}.

The necessity part carries over immediately (see also [6]). The sufficiency part will
be proved by induction. Thus suppose that (12) is true for l = 1, . . . , n and α’s as
indicated. Then, as in the case n = 1, by (9)∫ ∞

0
|Tmf(x)e−x/2|2xα+n+1dx ≈

∞∑
k=0

Aα+n+1
k |∆n∆(mkf̂α(k))|2

≤ C
∞∑

k=0

Aα+n+1
k |∆n(mk∆f̂α(k))|2 + C

∞∑
k=0

Aα+n+1
k |∆n(f̂α(k + 1)∆mk)|2 =: I + II

By the assumption and (10)

I ≤ C‖m‖2
wbv2,n

∞∑
k=0

Aα+n+1
k |∆nf̂α+1(k))|2 ≤ C‖m‖2

wbv2,n+1

∫ ∞

0
|f(x)e−x/2|2xα+n+1dx

on account of the embedding properties of the wbv–spaces [5]. Analogously II can
be estimated by

II ≤ C‖{(k + 1)∆mk}‖2
wbv2,n

∞∑
k=0

Aα+n+1
k

∣∣∣∆n
( f̂α(k + 1)

k + 1

)∣∣∣2.
By the Leibniz formula for differences there holds

∆n
( f̂α(k + 1)

k + 1

)
≤ C

n∑
j=0

|∆j f̂α(k + 1)| |∆n−j 1
j + k + 1

|

≤ C
n∑

j=0
(j + k + 1)j−n−1|∆j f̂α(k + 1)|.

Hence we have to dominate for j = 0, . . . , n

IIj :=
∞∑

k=0

Aα−n−1+2j
k |∆j f̂α(k + 1)|2.

If α > n then cj := −α − 2j + n + 1 < 1 for all j = 0, . . . , n, ∆j f̂α(k + 1) =∑∞
i=k+1 ∆j+1f̂α(i), and we can apply [8, Theorem 346] repeatedly to obtain

IIj ≤ C
∞∑

k=0

Aα−n−1+2j
k |(k + 1)∆j+1f̂α(k + 1)|2 ≈

∞∑
k=0

Aα−n+2j+1
k |∆j+1f̂α(k + 1)|2

≤ . . . ≤ C
∞∑

k=0

Aα+n+1
k |∆n+1f̂α(k + 1)|2 ≤ C

∫ ∞

0
|f(x)e−x/2|2xα+n+1dx .
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Since ‖{(k + 1)∆mk}‖wbv2,n ≤ C‖m‖wbv2,n+1 , this gives the assertion for the weight
xn+1 in the case α > n.

If α < n, α 6= 0, . . . , n, then some cj > 1. For the application of [8, Theorem 346]
one needs cj 6= 1; this is guaranteed by the hypothesis α 6= 0, . . . , n (in the case of an
additional weight xn+1). For the j for which cj > 1 we have to use the representation

∆j f̂α(k + 1) = −
k∑

i=0
∆j+1f̂α(i), if ∆j f̂α(0) = 0,

i.e., the first (j + 1) Fourier-Laguerre coefficients have to vanish to ensure this rep-
resentation. But 0 ≤ j ≤ j0, where j0 is choosen in such a way that cj0 > 1 and
cj0+1 < 1, hence j0 = [(n − α)/2] (with respect to the additional weight xn+1); here
we used the standard notation for [a], a ∈ R, to be the greatest integer ≤ a. Hence
the condition that the first [(n−α)/2]+1 Fourier-Laguerre coefficients have to vanish
is needed if the additional weight is xn+1. A repeated application of [8, Theorem 346]
with appropriate c > 1 or c < 1 now gives the assertion.
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