
q-Extensions of Barnes’, Cauchy’s, and Euler’s beta integrals*

George Gasper†

(Published in Topics in Mathematical Analysis, ed. by Yh. M. Rassias,
World Scientific Publ. Comp., London and Singapore (1989), pp. 294–314.)

Abstract. It is shown how Cauchy’s residue theorem and certain summation formulas
for basic hypergeometric series can be used to further extend some previous q-extensions of
Barnes’, Cauchy’s, and Euler’s beta integrals. In addition, related basic contour integrals
are evaluated, a general transformation formula for basic hypergeometric series is derived
and some directions for future research are pointed out.

1. Introduction. The beta function is usually defined by

(1.1) B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

,

where Re(x) > 0, Re(y) > 0, and Γ(x) is the gamma function. The above integral is called
Euler’s beta integral on the the interval [0, 1]. Euler’s beta integral on the interval [0, ∞)
is the integral

(1.2)
∫ ∞

0

sx−1

(1 + s)x+y
ds =

Γ(x)Γ(y)
Γ(x + y)

, Re(x) > 0, Re(y) > 0.

This formula follows from (1.1) by setting t = s/(1 + s). The integrals in (1.1) and (1.2)
can be converted to beta integrals on any finite or half infinite interval, respectively, by a
linear change in the variable of integration.

In 1825 Cauchy [12,13] showed that if Re(c) > 0, Re(d) > 0 and Re(x + y) > 1, then

(1.3)
1
2π

∫ ∞

−∞

dt

(1 + ict)x(1 − idt)y
=

Γ(x + y − 1)(1 + d/c)1−y(1 + c/d)1−x

Γ(x)Γ(y)(c + d)

and

(1.4)
1
2π

∫ ∞

−∞

dt

(1 + ict)x(1 + idt)y
= 0.
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Askey [5] called these integrals “beta integrals” because, as in Euler’s beta integrals, they
are integrals of the product of two powers of linear functions on an appropriate contour.

Barnes [11] showed in 1908 that if Re(a, b, c, d) > 0, then

1
2π

∫ ∞

−∞
Γ(a + it)Γ(b + it)Γ(c − it)Γ(d − it)dt(1.5)

=
Γ(a + c)Γ(a + d)Γ(b + c)Γ(b + d)

Γ(a + b + c + d)
,

which is usually referred to as Barnes’ lemma. Askey and Roy [8] called the integral in
(1.5) Barnes’ beta integral because, as they showed, (1.1) is a limit case of (1.5).

In [33] Wilson gave his solution to a problem proposed by Askey of proving the fol-
lowing q-extension of (1.3): if Re(c) > 0, Re(d) > 0 and Re(x + y) > 1, then

1
2π

∫ ∞

−∞

(−ictqx, idtqy; q)∞
(−ict, idt; q)∞

dt(1.6)

=
Γq(x + y − 1)(−dqy/c,−cqx/d; q)∞

Γq(x)Γq(y)(−dq/c, −cq/d; q)∞(c + d)
,

where 0 < q < 1,

(a; q)∞ =
∞∏

k=0

(1 − aqk),

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ · · · (am; q)∞,

and the q-gamma function is defined by

Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x.

Another q-extension of Cauchy’s beta integral is given in [5].
Askey and Roy [8] derived the formula

1
2π

∫ π

−π

(feiθ/d, dqe−iθ/f, cfe−iθ, qeiθ/cf ; q)∞
(aeiθ, beiθ, ce−iθ, de−iθ; q)∞

dθ(1.7)

=
(abcd, f, q/f, cf/d, dq/cf ; q)∞

(q, ac, ad, bc, bd; q)∞
,

where max(|a|, |b|, |c|, |d|, |q|) < 1 and cdf 6= 0, and showed that (1.5) is a limit case of
(1.7). They also derived another q-extension of (1.5) involving an integral from minus
infinity to infinity which is different from a q-extension derived over seventy years earlier
by Watson [31].

Formulas (1.6) and (1.7) were derived by the standard method of applying Cauchy’s
residue theorem (see, e.g., [32, p. 112] and [27, Chapter 4]) and summing the residues that
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arose. In this paper we shall show that Cauchy’s residue theorem can also be used to
extend (1.7) to

1
2π

∫ π

−π

(γe−iθ, αβqe−iθ/γ, δeiθ, qeiθ/γ, γeiθ/αβ; q)∞
(αe−iθ, βe−iθ, aeiθ, beiθ, ceiθ; q)∞

dθ(1.8)

=
(γ/α, αq/γ, γ/β, βq/γ, δ/a, δ/b, δ/c; q)∞

(q, aα, aβ, bα, bβ, cα, cβ; q)∞

where δ = abcαβ, max(|a|, |b|, |c|, |α|, |β|, |q|) < 1 and abcαβγ 6= 0, to derive extensions of
(1.6) and (1.8), to evaluate some related integrals, and to derive a general transformation
for basic hypergeometric series. Formula (1.7) is the c → 0 limit case of (1.8). See [3,
6, 8, 17] for some q-extensions of (1.2) and see [4, 21, 25, 29] for some multidimensional
extensions of (1.1). Unless stated otherwise, it is assumed below that q is a complex
number and 0 < |q| < 1.

2. Summation formulas. In order to sum the residues that arise, we shall need to use
some summation formulas for basic hypergeometric series.

Letting

(a; q)n =
n−1∏
k=0

(1 − aqk)

denote the q-shifted factorial and setting

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n,

a r+1φr basic hypergeometric series is defined by

(2.1) r+1φr

[
a1, . . . , ar+1
b1, . . . , br

; q, z
]

=
∞∑

k=0

(a1, . . . , ar+1; q)k

(q, b1, . . . , br; q)k
zk, |z| < 1.

In (2.1) it is assumed that no denominator parameter is 1 or a negative integer power of
q. Note that since (q−n; q)k = 0 for k = n + 1, n + 2, . . ., this series terminates if one of its
numerator parameters a1, . . . , ar+1 is 1 or a negative integer power of q.

In 1843 Cauchy [14] derived the terminating case of the formula

(2.2) 1φ0

[
a
− ; q, z

]
=

∞∑
k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

, |z| < 1,

which sums a 1φ0 series and is a q-analogue of the binomial theorem (also see Bailey [9],
Slater [30], and Gasper and Rahman [19]). By replacing a in (2.2) by qa, letting q → 1
and using the binomial theorem it can be shown that

(2.3) lim
q→1−

(qaz; q)∞
(q; q)∞

= (1 − z)−a, |z| < 1, −∞ < a < ∞.
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For a rigorous proof of (2.3) and of

(2.4) lim
q→1−

Γq(x) = Γ(x), 0 < x < ∞,

see Koornwinder [26]. Also see [1, 2, 3, 7].
Heine [22] showed in 1847 that

(2.5) 2φ1

[
a, b
c

; q,
c

ab

]
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

, |c/ab| < 1,

which is a q-analogue of Gauss’ summation formula for a 2F1(1) series and contains (2.2)
as a limit case. Wilson’s proof of (1.6) used (2.5) to sum the residues at the poles of the
integrand that were in the upper half plane. Heine’s sum is the n → ∞ limit case of

(2.6) 3φ2

[
a, b, q−n

c, abq1−n/c
; q, q

]
=

(c/a, c/b; q)n

(c, c/ab; q)n
, n = 0, 1, . . . ,

which was derived in 1910 by Jackson [23] and is sometimes called the q-Saalschütz formula.
In 1921 Jackson [24] extended (2.6) to

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, q−n

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aqn+1 ; q, q

]
(2.7)

=
(aq, aq/bc, aq/cd, aq/bd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n
, n = 0, 1, . . . ,

where a2q = bcdeq−n.
In their proof of (1.7) Askey and Roy derived and used a summation formula which

is a limit case of the following nonterminating extension of (2.6):

3φ2

[
a, b, c
e, f

; q, q
]

+
(a, b, c, q/e, fq/e; q)∞

(e/q, aq/e, bq/e, cq/e, f ; q)∞
(2.8)

·3φ2

[
aq/e, bq/e, cq/e

fq/e, q2/e
; q, q

]
=

(f/a, f/b, f/c, q/e; q)∞
(aq/e, bq/e, cq/e, f ; q)∞

,

where ef = abcq. This formula is a limit case of Bailey’s [10] nonterminating extension of
(2.7):

8φ7

[
a, qa

1
2 , −qa

1
2 , b, c, d, e, f

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aq/f

; q, q
]

(2.9)

+
(bq/c, bq/d, bq/e, bq/f, aq, c, d, e, f, b/a; q)∞

(b2q/a, bc/a, bd/a, be/a, bf/a, aq/c, aq/d, aq/e, aq/f, a/b; q)∞

· 8φ7

[
b2/a, qba− 1

2 , −qba− 1
2 , b, bc/a, bd/a, be/a, bf/a

ba− 1
2 , −ba− 1

2 , bq/a, bq/c, bq/d, bq/e, bq/f
; q, q

]
=

(aq, b/a, aq/de, aq/ce, aq/cd, aq/cf, aq/df, aq/ef ; q)∞
(aq/c, aq/d, aq/e, aq/f, bc/a, bd/a, be/a, bf/a; q)∞

,
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where a2q = bcdef .
We shall also use the author’s [15] summation formula

r+2φr+1

[
a, b, b1q

m1 , . . . , brq
mr

bq, b1, . . . , br
; q, a−1q1−(m1+···+mr)

]
(2.10)

=
(q, bq/a; q)∞(b1/b; q)m1 · · · (br/b; q)mr

(bq, q/a; q)∞(b1; q)m1 · · · (br; q)mr

bm1+···+mr ,

where m1, . . . , mr are nonnegative integers and |a−1q1−(m1+···+mr)| < 1. The b → 0 limit
case of (2.10) was recently rediscovered by Gustafson in his work [20] on multivariable
orthogonal polynomials. Some applications of (2.10) to orthogonal functions are given in
[16].

3. Derivation of (1.8) and an extension. Suppose that the function

(3.1) f(z) =
(γ/z, δ/z, a1z, . . . , arz; q)∞
(α/z, β/z, b1z, . . . , brz; q)∞

has only simple poles and consider the contour integral

(3.2) I =
1

2πi

∫
C

f(z)
dz

z
,

where the contour C is a deformation of the (positively oriented) unit circle so that the poles
of 1/(b1z, . . . , brz; q)∞ lie outside the contour and the origin and poles of 1/(α/z, β/z; q)∞
lie inside the contour. Let ρ be a positive number such that |ρqj | does not equal
|α|, |β|, |b−1

1 |, . . . , |b−1
r | for j = 0, ±1, ±2, . . ., and let Ck be the circle |z| = |ρqk|, where

k is a positive integer which is so large that Ck lies inside C. Then Ck does not pass
through any of the poles of f(z). Also let Mk equal the maximum value of |f(z)| on Ck.
From

f(qz) =
(1 − γ/qz)(1 − δ/qz)(1 − b1z) · · · (1 − brz)
(1 − α/qz)(1 − β/qz)(1 − a1z) · · · (1 − arz)

f(z)

and the fact that

(3.3)
∣∣∣∣ 1 − γ/z

1 − α/z

∣∣∣∣ =
∣∣∣γ
α

∣∣∣ (1 + O(|z|)) as z → 0,

we obtain that

(3.4) Mk+1 =
∣∣∣∣ γδ

αβ

∣∣∣∣ (1 + O(|q|k))Mk as k → ∞,

and hence Mk → 0 as k → ∞ if |γδ/αβ| < 1. Therefore, if |γδ/αβ| < 1, then

(3.5) lim
k→∞

1
2πi

∫
Ck

f(z)
dz

z
= lim

k→∞
1
2π

∫ π

−π

f(ρ|q|keiθ)dθ = 0,
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and so, by applying Cauchy’s residue theorem to the region between C and Ck and letting
k → ∞, we obtain that the integral I equals the sum of the residues of f(z)/z at the poles
of 1/(α/z, β/z; q)∞.

Since the residue of 1/(α/z; q)∞ at the pole z = αqn equals

(−1)nαq2n+(n
2)

(q; q)n(q; q)∞
,

where
(
n
2

)
= n(n − 1)/2 and n = 0, 1, . . ., it follows by using the identities

(aqn; q)∞ = (a; q)∞/(a; q)n,(3.6)

(aq−n; q)n = (−a/q)nq−(n
2)(q/a; q)n,(3.7)

that
1

2πi

∫
C

(γ/z, δ/z, a1z, . . . , arz; q)∞
(α/z, β/z, b1z, . . . , brz; q)∞

dz

z
(3.8)

=
(γ/α, δ/α, a1α, . . . , arα; q)∞
(q, β/α, b1α, . . . , brα; q)∞

· r+2φr+1

[
αq/γ, αq/δ, b1α, . . . , brα

αq/β, a1α, . . . , arα
; q,

γδ

αβ

]
+

(γ/β, δ/β, a1β, . . . , arβ; q)∞
(q, α/β, b1β, . . . , brβ; q)∞

· r+2φr+1

[
βq/γ, βq/δ, b1β, . . . , brβ

βq/α, a1β, . . . , arβ
; q,

γδ

αβ

]
,

when |γδ/αβ| < 1. The cases when the integrand in (3.8) has multiple poles can be treated
as limit cases of (3.8). From (2.8) and the r = 3 case of (3.8) we get

1
2πi

∫
C

(γ/z, αβq/γz, δz, qz/γ, γz/αβ; q)∞
(α/z, β/z, az, bz, cz; q)∞

dz

z
(3.9)

=
(γ/α, αq/γ, γ/β, βq/γ, δ/a, δ/b, δ/c; q)∞

(q, aα, aβ, bα, bβ, cα, cβ; q)∞
,

where δ = abcαβ, abcαβγ 6= 0,

aα, aβ, bα, bβ, cα, cβ 6= q−n, n = 0, 1, . . .

and the contour is as described below (3.2). When max(|a|, |b|, |c|, |α|, |β|) < 1, C can be
taken to be the unit circle and then (3.9) reduces to (1.8) by setting z = eiθ.

Similarly, using Bailey’s summation formula (2.9) and (3.8), we find that (3.9) can be
extended to

1
2πi

∫
C

(γ/z, αβq/γz, za
1
2 , −za

1
2 , qz/γ, γz/αβ; q)∞

(α/z, β/z, qza
1
2 , −qza

1
2 , aαz, aβz; q)∞

(3.10)

· (aqz/b, aqz/c, aqz/d, aqz/f ; q)∞
(bz, cz, dz, fz; q)∞

dz

z

=
(γ/α, αq/γ, γ/β, βq/γ, aq/cd, aq/bd, aq/bc, aq/bf, aq/cf, aq/df ; q)∞

(q, aαβ, bα, bβ, cα, cβ, dα, dβ, fα, fβ; q)∞
,
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where aq = bcdfαβ, bcdfαβγ 6= 0.

aαβ, bα, bβ, cα, cβ, dα, dβ, fα, fβ 6= q−n, n = 0, 1, . . .

and the contour C is a deformation of the positively oriented unit circle so that the
poles of 1/(bz, cz, dz, fz, aαz, aβz; q)∞ lie outside the contour and the origin and poles
of 1/(α/z, β/z; q)∞ lie inside the contour. The integral in (3.10) can be slightly simplified
by using the fact that

(za
1
2 , −za

1
2 ; q)∞

(qza
1
2 , −qza

1
2 ; q)∞

= 1 − az2.

When β = δ, (3.8) reduces to

1
2πi

∫
C

(γ/z, a1z, . . . , arz; q)∞
(α/z, b1z, . . . , brz; q)∞

dz

z
(3.11)

=
(γ/α, a1α, . . . , arα; q)∞

(q, b1α, . . . , brα; q)∞

· r+1φr

[
αq/γ, b1α, . . . , brα

a1α, . . . , arα
; q,

γ

α

]
,

provided |γ/α| < 1, the poles of 1/(b1z, . . . , brz; q)∞ lie outside of the contour and the
origin and poles of 1/(α/z; q)∞ lie inside the contour.

Using (2.5), the r = 1 case of (3.11) gives

(3.12)
1

2πi

∫
C

(γ/z, bqz; q)∞
(α/z, bz; q)∞

dz

z
=

(bγ; q)∞
(bα; q)∞

,
∣∣∣γ
α

∣∣∣ < 1.

Unfortunately, in order to be able to apply (2.6) or (2.7) to (3.11) we need to have γ = αq;
but then the r+1φr series equals 1 and so (3.11) reduces to

(3.13)
1

2πi

∫
C

(a1z, . . . , arz; q)∞
(b1z, . . . , brz; q)∞

dz

z − α
=

(a1α, . . . , arα; q)∞
(b1α, . . . , brα; q)∞

.

which is a special case of Cauchy’s integral formula. However, if we observe that by setting
e = a2qn+1/bcd in (2.7) and letting n → ∞, we get the summation formula

6φ5

[
a, qa

1
2 , −qa

1
2 , b, c, d

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d

; q,
aq

bcd

]
(3.14)

=
(aq, aq/bc, aq/cd, aq/bd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

∣∣∣ aq

bcd

∣∣∣ < 1,

we can apply this sum to (3.11) to get

1
2πi

∫
C

(γ/z, q2z/aαγ, q2z/bαγ, q2/cαγ; q)∞
(α/z, az, bz, cz; q)∞

(1 − qz2/αγ)dz

z
(3.15)

=
(αq/γ, aγ, bγ, cγ; q)∞

(q, aα, bα, cα; q)∞
,
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where q2 = abcαγ2, |γ/α| < 1, the poles of 1/(az, bz, cz; q)∞ lie outside the contour and
the origin and poles of 1/(α/z; q)∞ lie inside the contour.

In addition, since (3.11) gives

1
2πi

∫
C

(γ/z, bqz, qz/γqm, a1z, . . . , arz; q)∞
(α/z, az, bz, a1zqm1 , . . . , arzqmr ; q)∞

dz

z
(3.16)

=
(γ/α, bαq, αq/γqm, a1α, . . . , arα; q)∞
(q, aα, bα, a1αqm1 , . . . , arαqmr ; q)∞

· r+3φr+2

[
aα, bα, αq/γ, a1αqm1 , . . . , arαqmr

bαq, αq/γqm, a1α, . . . , arα
; q,

γ

α

]
,

we can apply (2.10) to the above series and use (3.6) to obtain

(3.17)

1
2πi

∫
C

(γ/z, bqz, qz/γ; q)∞
(α/z, az, bz; q)∞

(qz/γqm; q)m(a1z; q)m1 · · · (arz; q)mr

dz

z

=
(γ/α, αq/γ, bq/a; q)∞

(aα, q/aα, bα; q)∞
(q/bγqm; q)m(a1/b; q)m1 · · · (ar/b; q)mr (bα)m+m1+···+mr ,

provided |γ/α| < 1, where m, m1, . . . , mr are nonnegative integers, q = aγqm+m1+···+mr

and C is a deformation of the unit circle so that the poles of 1/(az, bz; q)∞ lie outside C
and the origin and poles of 1/(α/z; q)∞ lie inside C.

Notice that if we let q = e−t with t > 0 and set z = qs, then for the integral in (3.2)
we obtain that

(3.18)
1

2πi

∫
C

f(z)
dz

z
=

t

2πi

∫ iπ/t

−iπ/t

f(qs)ds,

where in the integral on the right side the contour of integration is along the imaginary axis
with indentations, if necessary, to separate the increasing sequences of poles in |Im(s)| ≤
π/t from those that are decreasing. Basic contour integrals of the type on the right side of
(3.18) were considered by Slater in Chapter 5 of [30] and used to derive several formulas
involving sums of basic hypergeometric series.

4. Extensions of (1.6). Let 0 < q < 1, Re(c, d1, . . . , dr) > 0,

(4.1) g(z) =
(−iacz, ib1z, . . . , ibrz; q)∞
(−icz, id1z, . . . , idrz; q)∞

and

(4.2) J =
1
2π

∫ ∞

−∞
g(t)dt.

This integral reduces to (1.6) when r = 1, a = qx, b1 = dqy, and d1 = d. The restriction
that 0 < q < 1 is used to ensure that the poles of 1/(−icz; q)∞ lie in the upper half plane
and the poles of 1/(id1z, . . . , idrz; q)∞ lie in the lower half plane.
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As in [33] let Sk, k = 1, 2, . . ., be the semicircle in the upper half plane with center at
the origin and radius |c−1q−k−1/2|, Mk be the maximum value of g(z) on Sk, and let Lk

be the length of Sk. From

g(z) =
(1 + iacz)(1 − ib1z) · · · (1 − ibrz)
(1 + icz)(1 − id1z) · · · (1 − idrz)

g(qz)

and ∣∣∣∣ 1 + bz

1 + dz

∣∣∣∣ =
∣∣∣∣ bd

∣∣∣∣ (1 + O(|z|−1)) as |z| → ∞,

it follows that

Mk+1Lk+1 =
∣∣∣∣ ab1 · · · br

qd1 · · · dr

∣∣∣∣ (1 + O(qk))MkLk as k → ∞,

and hence MkLk → 0 as k → ∞ if |ab1 · · · br/qd1 · · · dr| < 1. Therefore, if
|ab1 · · · br/qd1 · · · dr| < 1, then

lim
k→∞

∫
Sk

g(z)dz = 0,

and thus, by Cauchy’s residue theorem, the integral J equals i times the sum of the residues
of g(z) at the poles of 1/(−icz; q)∞. Since the residue of 1/(−icz; q)∞ at the pole i/cqn

equals
(−1)nq(

n
2)

ic(q; q)n(q; q)∞

for n = 0, 1, . . ., by using the identities (3.6) and (3.7) we obtain

1
2π

∫ ∞

−∞

(−iact, ib1t, . . . , ibrt; q)∞
(−ict, id1t, . . . , idrt; q)∞

dt(4.3)

=
(a, −b1/c, . . . , −br/c; q)∞
c(q, −d1/c, . . . , −dr/c; q)∞

· r+1φr

[
q/a, −cq/b1, . . . , −cq/br

−cq/d1, . . . , −cq/dr
; q,

ab1 · · · br

qd1 · · · dr

]
if |ab1 · · · br/qd1 · · · dr| < 1 and Re(c, d1, . . . , dr) > 0. The above integral equals zero if
Re(−c, d1, . . . , dr) > 0, since then there are no poles in the upper half plane.

Application of the q-Saalschütz sum (2.6) to the r = 2 case of (4.3) gives

(4.4)
1
2π

∫ ∞

−∞

(−ictqn+1, ibdt, iαt; q)∞
(−ict, idt, ibαtqn−1; q)∞

dt =
(−α/c, −bd/c; q)∞

(c + d)(−dq/c, −bα/cq; q)∞
(b, α/d; q)n

(q, −cq/d; q)n
,

where Re(c, d, bα) > 0 and n = 0, 1, . . .. Formula (1.6) can be obtained as a limit case of
(4.4) by letting n → ∞ and then setting b = qy and α = −cqx. More generally, application
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of Jackson’s sum (2.7) to (4.3) gives

1
2π

∫ ∞

−∞

(−iact, iac2t/α, iac2t/β, iac2t/γ, iac2t/δ, iac2t/λ; q)∞
(−ict, iαt, iβt, iγt, iδt, iλt; q)∞

(
1 +

ac2t2

q

)
dt(4.5)

=
(a/q,−ac/α,−ac/β,−ac/γ,−ac/δ,−ac/λ; q)∞

c(q, −α/c, −β/c, −γ/c, −δ/c, −λ/c; q)∞

· (q2/a, ac2/αβ, ac2/αγ, ac2/βγ; q)n

(−cq/α, −cq/β, −cq/γ, −a2c3/αβγq; q)n
,

where Re(c, α, β, γ, δ, λ) > 0, a3c5 = −αβγδλq2, ac = −λqn+1, and n = 0, 1, . . ..
Corresponding to (3.17), by applying (2.10) to (4.3) we obtain that

1
2π

∫ ∞

−∞

(−iact, idqt; q)∞
(−ict, idt; q)∞

(ia1t; q)m1 · · · (iart; q)mrdt(4.6)

=
(−ac/d; q)∞

(c + d)(−cq/d; q)∞
(a1/d; q)m1 · · · (ar/d; q)mr ,

where |aq−(m1+···+mr | < 1, m1, . . . , mr are nonnegative integers and Re(c, d, a1, . . . , ar) >
0.

By proceeding as in the proof of (4.3) with semicircles which do not pass through the
poles of 1/(−ic1, . . . , −ics; q)∞, we find that

1
2π

∫ ∞

−∞

(−ia1t, . . . , −iast, ib1t, . . . , ibrt; q)∞
(−ic1t, . . . , −icst, id1t, . . . , idrt; q)∞

dt(4.7)

=
(a1/c1, . . . , as/c1, −b1/c1, . . . , −br/c1; q)∞

c1(q, c2/c1, . . . , cs/c1, −d1/c1, . . . , −dr/c1; q)∞

· r+sφr+s−1

[
c1q/a1, . . . , c1q/as, −c1q/b1, . . . , −c1q/br

c1q/c2, . . . , c1q/cs, −c1q/d1, . . . , −c1q/dr
; q, ρ

]
+ idem(c1; c2, . . . , c3).

provided Re(c1, . . . , cs, d1, . . . , dr) > 0, the integrand has only simple poles and |ρ| < 1,
where

(4.8) ρ =
a1a2 · · · asb1b2 · · · br

qc1c2 · · · csd1d2 · · · dr
.

The symbol “idem(c1; c2, . . . , cs)” after an expression stands for the sum of the s − 1
expressions obtained from the preceding expression by interchanging c1 with each ck for
k = 2, 3, . . . , s.
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In particular, it follows from the s = 2 case of (4.7) that

(4.9)

1
2π

∫ ∞

−∞

(−iact,−iac2t/f, iac2t/α, iac2t/β, iac2t/γ, iac2t/δ; q)∞
(−ict,−ift, iαt, iβt, iγt, iδt; q)∞

(
1 +

ac2t2

q

)
dt

=
(a/q, ac/f,−ac/α,−ac/β,−ac/γ,−ac/δ; q)∞

c(q, f/c, −α/c, −β/c, −γ/c, −δ/c; q)∞

·
{

8φ7

[
q/a, q(q/a)

1
2 , −q(q/a)

1
2 , fq/ac, −αq/ac,−βq/ac,−γq/ac,−δq/ac

(q/a)
1
2 , −(q/a)

1
2 , cq/f, −cq/α, −cq/β, −cq/γ, −cq/δ

; q, q
]

− (ac2/f2q, −ac2/fα, −ac2/fβ, −ac2/fγ, −ac2/fδ; q)∞
(cq/f,−α/f, −β/f, −γ/f,−δ/f ; q)∞

· (fq/c, −α/c, −β/c, −γ/c, −δ/c; q)∞
(a/q,−ac/α,−ac/β,−ac/γ,−ac/δ; q)∞

· 8φ7

[
λ, qλ

1
2 , −qλ

1
2 , fq/ac, −fαq/ac2, −fβq/ac2, −fγq/ac2, −fδq/ac2

λ
1
2 , −λ

1
2 , fq/c, −fq/α, −fq/β, −fq/γ, −fq/δ

; q, q
]}

,

provided a3c5 = fαβγδq2, λ = f2q/ac2, Re(c, f, α, β, γ, δ) > 0 and the integrand has only
simple poles. Unfortunately, unlike in (3.10), Bailey’s summation formula (2.9) for the
sum of two 8φ7 series cannot be applied to the sum in (4.9) because of the form of the
coefficient of the second 8φ7 in (4.9). However, if we add the restriction that ac = fqn+1,
then we can use (2.7) to sum both of the 8φ7 series in (4.9) and obtain the formula

1
2π

∫ ∞

−∞

(−iact,−iac2t/f, iac2t/α, iac2t/β; q)∞
(−ict,−ift, iαt, iβt; q)∞

(4.10)

· (iac2t/γ, iac2t/δ; q)∞
(iγt, iδt; q)∞

(1 + ac2t2/q)dt

=
(a/q, ac/f,−ac/α,−ac/β,−ac/γ,−ac/δ; q)∞

c(q, f/c, −α/c, −β/c, −γ/c, −δ/c; q)∞

· (q2/a, ac2/αβ, ac2/αγ, ac2/βγ; q)n

(−cq/α, −cq/β, −cq/γ, −a2c3/αβγq; q)n

+
(ac2/f2q, ac/f,−ac2/fα, −ac2/fβ, −ac2/fγ, −ac2/fδ; q)∞

f(q, c/f, −α/f, −β/f, −γ/f,−δ/f ; q)∞

· (f2q2/ac2, ac2/αβ, ac2/αγ, ac2/βγ; q)n

(−fq/α, −fq/β, −fq/γ, −a2c4/fαβγq; q)n
,

provided ac = fqn+1, a3c5 = fαβγδq2, Re(c, f, α, β, γ, δ) > 0, the integrand has only
simple poles, and n = 0, 1, . . ..

Note that if we also apply the residue theorem to the integral in (4.7) by using the
poles in the lower half plane and set the result equal to the right side of (4.7), we obtain
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the transformation formula
(a1/c1, . . . , as/c1, −b1/c1, . . . , −br/c1; q)∞

c1(q, c2/c1, . . . , cs/c1, −d1/c1, . . . , −dr/c1; q)∞
(4.11)

· r+sφr+s−1

[
c1q/a1, . . . , c1q/as, −c1q/b1, . . . , −c1q/br

c1q/c2, . . . , c1q/cs, −c1q/d1, . . . , −c1q/dr
; q, ρ

]
+ idem(c1; c2, . . . , cs)

=
(b1/d1, . . . , br/d1, −a1/d1, . . . , −as/d1; q)∞

d1(q, d2/d1, . . . , dr/d1, −c1/d1, . . . , −cs/d1; q)∞

· r+sφr+s−1

[
d1q/b1, . . . , d1q/br, −d1q/a1, . . . , −d1q/as

d1q/d2, . . . , d1q/dr, −d1q/c1, . . . , −d1q/cs
; q, ρ

]
+ idem(d1; d2, . . . , dr),

provided the denominators of the coefficients of the φ series and of the terms in the series
do not vanish and |ρ| < 1, where ρ is as defined in (4.8). The transformation formula
which follows by applying this procedure to integrals of the type in (3.18) is given in Slater
[30, (5.2.16)]

5. Remarks. In 1944 Selberg [29] extended Euler’s beta integral on [0, 1] to the multi-
variable integral∫ 1

0
· · ·

∫ 1

0

n∏
j=1

tx−1
j (1 − tj)y−1

∏
1≤j<k≤n

|tj − tk|2zdt1 · · · dtn(5.1)

=
n∏

j=1

Γ(x + (j − 1)z)Γ(y + (j − 1)z)Γ(jz + 1)
Γ(x + y + (n + j − 2)z)Γ(z + 1)

,

where Re(x) > 0, Re(y) > 0, and Re(z) > − min(1/n, Re(x)/(n − 1), Re(y)/(n − 1)).
Askey [4] conjectured a q-extension of Selberg’s integral which was recently proved by
Habsieger [21] and Kadell [25]. Other q-extensions of (5.1) were conjectured in Askey [4]
and Rahman [28]. For a brief survey of applications of Selberg’s integral to root systems
and recent extensions and conjectured extensions of it, see Zeilberger [34]. It would be
of interest if multivariable extensions of Cauchy’s and Barnes’ beta integrals and their
q-extensions could be derived.

Recently the author [18] derived the bibasic indefinite summation formula
n∑

k=0

(1 − apkqk)(1 − bpkq−k)
(1 − a)(1 − b)

(a, b; p)k(c, a/bc; q)k

(q, aq/b; q)k(ap/c, bcp; p)k
qk(5.2)

=
(ap, bp; p)n(cq, aq/bc; q)n

(q, aq/b; q)n(ap/c, bcp; p)n
,

where p and q are independent bases and n = 0, 1, . . ., and used it to derive a biba-
sic extension of Euler’s transformation formula, a bibasic expansion formula, and some
quadratic, cubic and quartic summation formulas. This suggests the problem of finding
bibasic functions for which integrals of the types in (3.18) and (4.2) can be evaluated.

12



References

1. G. E. Andrews and R. Askey, Another q-extension of the beta function, Proc. Amer.
Math. Soc. 81 (1981), 97–100.

2. R . Askey, The q-gamma and q-beta functions, Applicable Analysis 8 (1978), 125–141.
3. , Ramanujan’s extensions of the gamma and beta functions, Amer. Math.

Monthly 87 (1980), 346–359.
4. , Some basic hypergeometric extensions of integrals of Selberg and An-

drews, SIAM J. Math. Anal. 11 (1980), 938–951.
5. , A q-extension of Cauchy’s form of the beta integral, Quart. J. Math.

(Oxford) 2, 32 (1981), 255–266.
6. , Beta integrals in Ramanujan’s papers, his unpublished work and further

examples, to appear.
7. R. Askey and M. Ismail, A generalization of ultraspherical polynomials, in Studies in

Pure Mathematics, ed. P. Erdös, Birkhaüser, Basel, 1983, 55–78.
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