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Abstract. A q-extension of the terminating form of Clausen’s 3F2 series represen-
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1. Introduction. In 1828 Clausen [15] used second- and third-order differential equa-
tions to prove the formula

(1.1)
{

2F1

[
a, b

a + b + 1/2 ; z
]}2

= 3F2

[
2a, 2b, a + b

2a + 2b, a + b + 1/2 ; z
]

, |z| < 1.

The above 2F1 and 3F2 are special cases of rFs hypergeometric series defined by

rFs

[
a1, . . . , ar

b1, . . . , bs
; z

]
=

∞∑
n=0

(a1)n · · · (ar)n

n!(b1)n · · · (bs)n
zn,

where (a)n is the shifted factorial defined by

(a)n =
n−1∏
k=0

(a + k).
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Almost 150 years later, Clausen’s formula was used in Askey and Gasper [4] to prove that

(1.2) 3F2

[ −n, n + α + 2, (α + 1)/2
α + 1, (α + 3)/2 ;

1 − x

2

]
≥ 0, −1 ≤ x ≤ 1,

when α > −2 and n = 0, 1, 2, . . . , and then this inequality was used to prove the positivity
of certain important kernels involving sums of Jacobi polynomials (also see Askey [3,
Lecture 8] and the extensions in Gasper [18], [19]). In 1984 the special cases α = 2, 4, 6, . . .
of (1.2) were used by de Branges [11], [12] to complete the last part of his proof of the
Milin [30, p. 55] conjecture that if f is in the class S of functions

f(z) = z + c2z
2 + c3z

3 + · · ·

that are analytic and univalent in the unit disk |z| < 1 and if

log
f(z)

z
= 2

∞∑
k=1

γkzk,

then

(1.3)
n∑

k=1

k(n + 1 − k)|γk|2 ≤
n∑

k=1

n + 1 − k

k
, n = 1, 2, . . . .

It was already known that Milin’s conjecture implied Robertson’s [33] conjecture that if f
is an odd function in S, then

(1.4)
n∑

k=1

|c2k−1|2 ≤ n, n = 2, 3, . . . ,

and that Robertson’s conjecture implied Bieberbach’s [9] conjecture that if f is in S, then

(1.5) |cn| ≤ n, n = 2, 3, . . . .

Since rFs series are limit cases of rφs basic hypergeometric series [25], [38]

(1.6) rφs

[
a1, . . . , ar

b1, . . . , bs
; q, z

]
=

∞∑
n=0

(a1, . . . , ar; q)n

(q, b1, . . . , bs; q)n
[(−1)nq(

n
2)]1+s−rzn,

where
(
n
2

)
= n(n − 1)

/
2,

(a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n

and (a; q)n is the q-shifted factorial defined by

(a; q)n =
n−1∏
k=0

(1 − aqk),
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it is natural to search for q-extensions (also called q-analogues and, in the terminology of
[10], quantum generalizations) of Clausen’s formula (1.1), the inequalities (1.2), and of the
other parts of de Branges’ proof of the Milin conjecture.

In this paper we will derive a q-extension of Clausen’s formula (1.1) for terminating
series and various q-extensions of the inequalities (1.2) and of some other inequalities. In
addition, since the existence of decreasing solutions of de Branges’ differential equations

(1.7) σn(t) +
t

n
σ′

n(t) = σn+1(t) − t

n + 1
σ′

n+1(t), 1 ≤ t < ∞,

played a crucial role in his proof of the Milin conjecture, we derive q-extensions of (1.7)
and show that they have solutions which have negative first q-derivatives. Some prospects
for further research are pointed out.

2. q-Extensions of Clausen’s formula (1.1). In 1940 Jackson [27] derived a general
theorem about solutions of qθ equations, where qθ is the operator exp

(
(log q)x d

dx

)
, which

gives [28, p. 171] the product formula

2φ1

[
q2a, q2b

q2a+2b+1 ; q2, z

]
2φ1

[
q2a, q2b

q2a+2b+1 ; q2, qz

]
(2.1)

= 4φ3

 q2a, q2b, qa+b, −qa+b

q2a+2b, qa+b+1/2, −qa+b+1/2 ; q, z

 , |z| < 1, |q| < 1.

Since

(2.2) lim
q↑1

(qa; q)n

(1 − q)n
= (a)n, lim

q↑1
(−qa; q)n = 2n,

Clausen’s formula (1.1) is a limit case of Jackson’s product formula (2.1). However, unlike
in (1.1), the left side of (2.1) is not a square and so (2.1) cannot be used to write sums
of basic hypergeometric series as sums of squares of basic hypergeometric series as was
done in [4], [18] for hypergeometric series to prove the nonnegativity of certain sums of
hypergeometric series. Also, by considering negative integer values of a, we find that the
series on the right side of (2.1) can assume negative values. It is natural to consider
replacing the left side of (1.1) by

(2.3)
{

2φ1

[
qa, qb

qa+b+1/2 ; q, z
]}2

but, unfortunately, this square of a 2φ1 series does not equal a basic hypergeometric series
of the type in (1.6) as can be easily seen by computing the coefficient of z2 in its power
series expansion. Thus, in order to find a basic hypergeometric series which is the square
of a basic hypergeometric series we are forced to look for another q-extension of (1.1).
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One way to proceed is to recall that in [4] Clausen’s formula was used to write (1.2)
as a sum of squares of ultraspherical polynomials

Cλ
n(x) =

(2λ)n

n! 2F1

[
−n, n + 2λ

λ + 1/2 ;
1 − x

2

]
(2.4)

=
(λ)n

n!
einθ

2F1

[
−n, λ

1 − n − λ
; e−2iθ

]
, x = cos θ,

and to recall that in his work [34]–[36] during the 1890’s on the now famous Rogers–
Ramanujan identities, Rogers [36] considered the q-extension

(2.5) Cn(x; β | q) =
(β; q)n

(q; q)n
einθ

2φ1

[
q−n, β

q1−nβ−1 ; q, qβ−1e−2iθ

]
, x = cos θ,

of (2.4). Askey and Ismail [6] showed that these polynomials were orthogonal on (−1, 1)
with respect to an absolutely continuous weight function and called them the continu-
ous q-ultraspherical polynomials to distinguish them from the (discrete) q-ultraspherical
polynomials

(2.6) Cλ
n(x; q) =

(q2λ; q)n

(q; q)n
2φ1

[
q−n, qn+2λ

qλ+1/2 ; q, qx
]

which are orthogonal [2, (3.8)] with respect to a discrete measure with point masses at
x = qk, k = 0, 1, 2, . . . . They also showed that

(2.7) Cλ
n(x) = lim

q↑1
Cn(x; qλ | q)

and

(2.8) Cn(cos θ; β | q) =
(β2; q)n

βn/2(q; q)n
4φ3

[
q−n, β2qn, β1/2eiθ, β1/2e−iθ

βq1/2, −βq1/2, −β
; q, q

]
.

In 1895 Rogers [36, p. 29] employed an induction argument to prove the linearization
formula

(2.9) Cm(x; β | q)Cn(x; β | q) =
min(m,n)∑

k=0

(q; q)m+n−2k(β; q)m−k(β; q)n−k

(q; q)k(q; q)m−k(q; q)n−k

· (β; q)k(β2; q)m+n−k(1 − βqm+n−2k)
(βq; q)m+n−k(β2; q)m+n−2k(1 − β)

Cm+n−2k(x; β | q).

A simple computational proof of (2.9) was given by the author in [20]. For additional proofs,
see Bressoud [14] and Rahman [31]. Note that if we use (2.5) or (2.8) on the right side of
(2.9), we get a double sum that does not reduce to a single sum when n = m, even after
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changing the order of summation and trying to apply known summation formulas. This is
also true when (2.8) is replaced by the formulas obtained by applying Sears’ transformation
formula [37, (8.3)]

(2.10) 4φ3

[
a, b, c, q−n

d, e, f
; q, q

]
=

(de/ab, df/ab; q)n

(e, f ; q)n

(
ab

d

)n

4φ3

[
d/a, d/b, c, q−n

d, de/ab, df/ab
; q, q

]
where def = abcq1−n and n = 0, 1, 2, . . . , to the 4φ3 series in (2.8).

The right side of (2.8) suggests that we should still look at expansions involving eiθ

and e−iθ among the parameters. Since the polynomials on the right side of (2.9) are of
even degree in x when n = m, we could try to use the expansion [7, p. 41]

C2n(cos θ; β | q) =
(β2; q)2n(−q, −q1/2; q)n

(q; q)2n(−β, −βq1/2; q)n
q−n/2(2.11)

· 4φ3

[
q−n, βqn, q1/2e2iθ, q1/2e−2iθ

βq1/2, −q1/2, −q
; q, q

]
,

in which the 4φ3 series terminates after n+1 terms, even though C2n(x; β|q) is a polynomial
of degree 2n in x. But, by using (2.11) in the right side of (2.9) and changing the order of
summation we get a sum of terminating very well poised 8φ7 series that are not balanced
and hence not summable by Jackson’s formula [38, (3.3.1.1)].

However, if we apply (2.10) to (2.11) to get

(2.12) C2n(cos θ; β | q) =
(β2; q)2n

βn(q; q)2n
4φ3

[
q−n, βqn, βe2iθ, βe−2iθ

βq1/2, −βq1/2, −β
; q, q

]
and use (2.12) in the right side of (2.9) we obtain

(2.13) {Cn(cos θ; β | q)}2

=
n∑

k=0

(β, β; q)n−k(β; q)k(β2; q)2n−k(1 − βq2n−2k)
(q, q; q)n−k(q; q)k(βq; q)2n−k(1 − β)

· βk−n
n−k∑
j=0

(qk−n, βqn−k, βe2iθ, βe−2iθ; q)j

(q, βq1/2, −βq1/2, −β; q)j
qj

=
(β2; q)2n(β, β; q)n

βn(β; q)2n(q, q; q)n

n∑
j=0

(q−n, βqn, βe2iθ, βe−2iθ; q)j

(q, βq1/2, −βq1/2, −β; q)j
qj

·6φ5

 β−1q−2n, β−1/2q1−n, −β−1/2q1−n, β, qj−n, q−n

β−1/2q−n, −β−1/2q−n, β−2q1−2n, β−1q1−n−j , β−1q1−n
; q, β−2q1−j


in which, fortunately, the 6φ5 series is summable by the summation formula [38, (3.3.1.4)]

6φ5

 a, qa1/2, −qa1/2, b, c, q−n

a1/2, −a1/2, aq/b, aq/c, aqn+1 ; q,
aqn+1

bc

(2.14)

=
(aq, aq/bc; q)n

(aq/b, aq/c; q)n
, n = 0, 1, 2, . . . ,
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where four misprints have been corrected. Using (2.14) to sum the 6φ5 series in (2.13)
gives

(2.15) {Cn(cos θ; β | q)}2 =
(β2, β2; q)n

(q, q; q)n
β−n

5φ4

[
q−n, β2qn, β, βe2iθ, βe−2iθ

β2, βq1/2, −βq1/2, −β
; q, q

]
and hence, by (2.8), we have the following q-extension of the terminating case of Clausen’s
formula (1.1)
(2.16){

4φ3

[
q−n, β2qn, β1/2eiθ, β1/2e−iθ

βq1/2, −βq1/2, −β
; q, q

]}2

= 5φ4

[
q−n, β2qn, β, βe2iθ, βe−2iθ

β2, βq1/2, −βq1/2, −β
; q, q

]
,

where n = 0, 1, 2, . . . . This formula was derived independently by Mizan Rahman. He
and the author independently observed that it can be derived by using (2.8) inside the
Rahman and Verma [32, (1.20)] integral representation for the product of two continuous
q-ultraspherical polynomials and then integrating termwise to get (2.15) and hence (2.16).

By setting a = β1/2eiθ, b = β1/2e−iθ and z = βqn, formula (2.16) can be written in
the form

(2.17)
{

4φ3

[
a, b, abz, ab/z

abq1/2, −abq1/2, −ab
; q, q

]}2

= 5φ4

[
a2, b2, ab, abz, ab/z

a2b2, abq1/2, −abq1/2, −ab
; q, q

]
,

which holds when the series on both sides terminate. For, by (2.16), (2.17) holds when abz
or ab/z is a negative integer power of q and, if a or b is a negative integer power of q, then
both sides of (2.17) are rational functions of z which are equal for z = abqn, n = 0, 1, 2, . . . ,
and hence must be equal for all (complex) values of z. Notice that by replacing a, b, z in
(2.17) by qa, qb, eiθ with x = cos θ and letting q ↑ 1, we get Clausen’s formula (1.1) with
z = (1 − x)/2 for the terminating case when a or b is a negative integer.

To see that (2.17) does not hold in the nonterminating case, it suffices to observe
that if, e.g., (2.17) held for b = 0, then it would follow from the q-binomial theorem [38,
(3.2.2.11)] that ((aq; q)∞)2 = (a2q; q)∞(q; q)∞, which is clearly false for, e.g., a = q−1/2.
A nonterminating q-extension of (1.1) containing the square of an 8φ7 series and the sum
of two 5φ4 series will be given in [26].

Note that, in addition to the formulas that follow when (2.10) is applied to the 4φ3 in
(2.17), we can apply the quadratic transformation formula [7, (3.2)]

(2.18) 4φ3

[
a2, b2q, c, d

abq,−abq,−cd
; q, q

]
= 4φ3

[
a2, b2q, c2, d2

a2b2q2, −cd, −cdq
; q2, q2

]
,

which holds when both series terminate, to obtain that (2.17) is equivalent to the formula

(2.19)
{

4φ3

[
a2, b2, abz, ab/z
a2b2q, −ab,−abq

; q2, q2
]}2

= 5φ4

[
a2, b2, ab, abz, ab/z

a2b2, abq1/2, −abq1/2, −ab
; q, q

]
when both series terminate. Also, if we replace a, b, z, q in (2.17) by their squares and
apply (2.18), we obtain that

(2.20)
{

4φ3

[
a2, b2, abz, ab/z

abq1/2, −abq1/2, −a2b2 ; q, q
]}2

= 5φ4

[
a4, b4, a2b2, a2b2z2, a2b2/z2

a4b4, a2b2q, −a2b2q, −a2b2 ; q2, q2
]
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when both series terminate.
Another proof of (2.17) can be given by observing that from the product formulas

(2.8) or (2.10) in Gasper and Rahman [24] it follows that if a, b, abz, or ab/z is a negative
integer power of q, then
(2.21){

4φ3

[
abz, ab/z, a, b

−ab, abq1/2, −abq1/2 ; q, q

]}2

=
∑
r≥0

∑
s≥0

(abz, ab/z; q)r+s(a, b, −a, −b; q)r

(−ab,−ab; q)r+s(q, −q, abq1/2, −abq1/2; q)r

· (a, b, −a, −b; q)s

(q, −1, abq1/2, −abq1/2; q)s

1 + qr−s

1 + qs
qr+s

=
∑
k≥0

(abz, ab/z, a, −a, b, −b; q)k

(q, −1, abq1/2, −abq1/2, −ab,−ab; q)k
qk

·
k∑

s=0

(q−k, −q−k, a, −a, b, −b, a−1b−1q1/2−k, −a−1b−1q1/2−k; q)s

(q, −q, a−1q1−k, −a−1q1−k, b−1q1−k, −b−1q1−k, abq1/2, −abq1/2; q)s

1 + q2s−k

1 + q−k
q2s

=
∑
k≥0

(abz, ab/z, a, b, −a, −b; q)k

(q, −1, abq1/2, −abq1/2, −ab,−ab; q)k
qk

· 5φ4

[
q−2k, −q2−k, a2, b2, a−2b−2q1−2k

−q−k, a−2q2−2k, b−2q2−2k, a2b2q
; q2, q2

]

= 5φ4

 a2, b2, ab, abz, ab/z

a2b2, abq1/2, abq1/2, −ab
; q, q

 ,

since it can be shown that

5φ4

[
q−2k, −q2−k, a2, b2, a−2b−2q1−2k − q−k, a−2q2−2k, b−2q2−2k, a2b2q ; q2, q2

](2.22)

=
(−1, a2, b2, ab, −ab; q)k

(a2b2, a, −a, b, −b; q)k
, k = 0, 1, 2, . . . ,

by using the case d = eq1/2 = (aq)1/2 of Jackson’s summation formula [38, (3.3.1.1)]. A
slightly more direct proof of (2.17) can be given by starting with the expansion [24, (2.2)]
used to derive [24, (2.8)].

3. q-Extensions of (1.2). At the last step in his proof of the Milin conjecture, de
Branges [12] used the fact that for any positive integer r the functions

(3.1) σn(t) =
nΓ(n + r + 2)

Γ(2n + 2)Γ(r + 1 − n)

∫ ∞

t
3F2

[
n − r, n + r + 2, n + 1/2

2n + 1, n + 3/2 ; s−1
]

s−n−1ds
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when n = 1, . . . , r and σn(t) = 0 when n > r, satisfy the differential equations (1.7) and

(3.2) σ′
n(t)) = − nΓ(n + r + 2)t−n−1

Γ(2n + 2)Γ(r + 1 − n)) 3F2

[
n − r, n + r + 2, n + 1/2

2n + 1, n + 3/2 ; t−1
]

≤ 0

for t ≥ 1 when n = 1, . . . , r. In [13], to estimate the coefficients of powers of unbounded
Riemann mapping functions, he used the fact that the more general functions

σn(t) =
Γ(n + 1)Γ(n + r + 2ν + 2λ + 1)4−nt2ν

Γ(n + ν + 1)Γ(n + 2ν)Γ(n + ν + λ + 1)Γ(r + 1 − n)

(3.3)

·
∫ ∞

t
3F2

[
n − r, n + r + 2ν + 2λ + 1, n + ν + 1/2

2n + 2ν + 1, n + ν + λ + 1
; s−1

]
s−n−2ν−1ds

when n = 1, . . . , r and σn(t) = 0 when n > r, satisfy the differential equations

(3.4)
n

n + 2ν
σn(t) +

tσ′
n(t)

n + 2ν
=

n + 2ν + 1
n + 1

σn+1(t) − tσ′
n+1(t)
n + 1

and

d

dt
[t−2νσn(t)] = − Γ(n + 1)Γ(n + r + 2ν + 2λ + 1)4−n

Γ(n + ν + 1)Γ(n + 2ν)Γ(n + ν + λ + 1)Γ(r + 1 − n)

(3.5)

· 3F2

[
n − r, n + r + 2ν + 2λ + 1, n + ν + 1/2

2n + 2ν + 1, n + ν + λ + 1
; t−1

]
≤ 0

for t ≥ 1 when ν > −1/2, λ ≥ 0, and n = 1, . . . , r.
Since (3.5) reduces to (3.2) when ν = λ+1/2 = 0, in addition to deriving q-extensions

of (1.2) we will derive q-extensions of the inequalities

(3.6) 3F2

[ −n, n + a, b
2b, (a + 1)/2 ;

1 − x

2

]
≥ 0, −1 ≤ x ≤ 1,

where a ≥ 2b > −1 and n = 0, 1, . . . , which imply the inequalities in (3.5) and reduce to
(1.2) when a = α + 2 and b = (α + 1)

/
2.

Let 0 < q < 1, n = 0, 1, 2, . . . , and let a, b, α, β, γ, δ, θ be real parameters. Then

(3.7) lim
q→1

5φ4

 q−n, qn+a, qb, qαeiθ, qβe−iθ

q2b, q(a+1)/2, −qγ , −qδ
; q, q

 = 3F2

[
−n, n + a, b
2b, (a + 1)/2 ;

1 − x

2

]
,

x = cos θ,

and so, in order to derive a q-extension of (3.6), it suffices to find values of α, β, γ, δ for
which the 6φ5 series in (3.7) are nonnegative when a ≥ 2b > −1.
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Observe that from (2.16)

(3.8) 5φ4

 q−n, qn+2b, qb, qbeiθ, qbe−iθ

q2b, qb+1/2, −qb+1/2, −qb
; q, q


=

4φ3

 q−n, qn+2b, qb/2eiθ/2, qb/2e−iθ/2

qb+1/2, −qb+1/2, −qb
; q, q


2

≥ 0,

which shows that the 5φ4 series in (3.7) are nonnegative when a = 2b, α = β = δ = b, and
γ = b + 1/2. In view of the “sums of squares” method [18, §8], we will consider sums of
the nonnegative 5φ4 series in (3.8).

The author showed in [18, §8] that besides the sum of squares of ultraspherical poly-
nomials used in [4, (1.16)] to prove (1.2) we could also use the sum of squares in [18, (8.17)]
and observed that these two expansions are special cases of the expansion [18, (8.18)]

(3.9) 3F2

[
−n, n + α + 2, (α + 1)/2

α + 1, (α + 3)/3
; (1 − x2)(1 − y2)

]

=
n∑

j=0

n!(n + α + 2)j

(
α+2

2

)
j

j!(n − j)!
(

α+3
2

)
j
(j + α + 1)j

(1 − y2)j

·
{

j!(n − j)!
(α + 1)j(2j + α + 2)n−j

C
(α+1)/2
j (x)Cj+(α+2)/2

n−j (y)
}2

,

which can be derived from the Fields and Wimp [17] expansion formula

(3.10) r+tFs+u

[
aR, cT

bS , dU
; xw

]
=

∞∑
j=0

(aR)j(α)j(β)j

(bS)j(γ + j)j

(−x)j

j!

·r+2Fs+1

[
j + α, j + β, j + aR

1 + 2j + γ, j + bS
; x

]
t+2Fu+2

[
−j, j + γ, cT

α, β, dU
; w

]
,

where we used the contracted notation of representing a1, a2, . . . , ar by aR, (a1)j(a2)j · · · (ar)j

by (aR)j , and j + a1, j + a2, . . . , j + ar by j + aR. Recently the author derived a biba-
sic extension [22, (4.5)] of (3.10) which contained Verma’s [40] q-analogues and gave the
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general expansion [22, (4.7)]

(3.11)

r+tφs+u

[
aR, cT

bS , dU
; q, xw

]

=
∞∑

j=0

(cT , eK , σ, γqj+1/σ; q)j

(q, dU , fM , γqj ; q)j

(x

σ

)j

[(−1)jq(
j
2)]u+m−t−k

·t+k+4φu+m+3

 γq2j/σ, qj+1
√

γ/σ, −qj+1
√

γ/σ, σ−1, cT qj , eKqj

qj
√

γ/σ, −qj
√

γ/σ, γq2j+1, dUqj , fMqj
; q, xqj(u+m−t−k)


· r+m+2φs+k+2

[
q−j , γqj , aR, fM

γqj+1/σ, q1−j/σ, bS , eK
; q, wq

]
,

where we used a contracted notation analogous to that used in (3.10). Formulas (3.10)
and (3.11) hold when the series terminate and when the parameters and variables are such
that the series converge absolutely.

In this section we will use the following σ → ∞ limit case of the m = 2, f1 = f2 = 0
case of (3.11)

(3.12) r+tφs+u

[
aR, cT

bS , dU
; q, xw

]

=
∞∑

j=0

(cT , eK ; q)j

(q, dU , γqj ; q)j
xj [(−1)jq(

j
2)]u+3−t−k

· t+kφu+1

[
cT qj , eKqj

γq2j+1, dUqj
; q, xqj(u+3−t−k)

]

· r+2φs+k

[
q−j , γqj , aR

bS , eK
; q, wq

]
.

which is equivalent to [39, (3.1)]. Set

γ = q2b, a1 = qb, a2 = qbeiθ, a3 = qbe−iθ, b1 = q2b, b2 = −qb,

c1 = q−n, c2 = qn+a, d1 = q(a+1)/2 = −d2, e1 = qb+1/2 = −e2, x = q, w = 1,

10



in the r = 3, s = t = u = k = 2 case of (3.12) to obtain

(3.13) 5φ4

 q−n, qn+a, qb, qbeiθ, qbe−iθ

q2b, q(a+1)/2, −q(a+1)/2, −qb
; q, q


=

n∑
j=0

(q−n, qn+a, qb+1/2, −qb+1/2; q)j

(q, q(a+1)/2, −q(a+1)/2, qj+2b; q)j
(−1)jqj+(j

2)

· 4φ3

 qj−n, qj+n+a, qj+b+1/2, −qj+b+1/2

q2j+2b+1, qj+(a+1)/2, −qj+(a+1)/2 ; q, q


· 5φ4

 q−j , qj+2b, qb, qbeiθ, qbe−iθ

q2b, qb+1/2, −qb+1/2, −qb
; q, q

 .

By Andrews’ [1, Thm. 1] q-analogue of Watson’s 3F2 summation formula

(3.14) 4φ3

[
a, b, c1/2, −c1/2

c, (abq)1/2, −(abq)1/2 ; q, q
]

=
an/2(aq, bq, cq/a, cq/b; q2)∞

(q, abq, cq, cq/ab; q2)∞
,

where b = q−n and n is a nonnegative integer, the 4φ3 series in (3.13) equals zero when
n − j is odd and equals

(q, qa−2b; q2)k

(q2n−4k+a+1, q2n−4k+2b+2; q2)k
q2k(n−2k+b+1/2)

when n − j = 2k and k = 0, 1, . . . . Hence, from (3.13) and (3.8),

(3.15) 5φ4

 q−n, qn+a, qb, qbeiθ, qbe−iθ

q2b, q(a+1)/2, −q(a+1)/2, −qb
; q, q


=

[n/2]∑
k=0

(−1)n(q−n, qn+a, qb+1/2, −qb+1/2; q)n−2k

(q, q(a+1)/2, −q(a+1)/2, qn−2k+2b; q)n−2k

· (q, qa−2b; q2)k

(q2n−4k+a+1, q2n−4k+2b+2; q2)k
q2k(n−2k+b+1/2)+(n−2k)(n−2k+1)/2

·
4φ3

 q2k−n, qn−2k+2b, qb/2eiθ/2, qb/2e−iθ/2

qb+1/2, −qb+1/2, −qb
; q, q


2

.

Since (−1)n(q−n; q)n−2k ≥ 0, it is clear from (3.15) that

(3.16) 5φ4

[
q−n, qn+a, qb, qbeiθ, qbe−iθ

q2b, q(a+1)/2, −q(a+1)/2, −qb ; q, q
]

≥ 0
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when a ≥ 2b > −1 and 0 < q < 1, which gives a q-extension of (3.6) and hence of the
inequalities (1.2) used by de Branges in his proof of the Bieberbach, Robertson, and Milin
conjectures.

Another q-extension of (3.6) can be derived by observing that from (3.12) we have

(3.17) 6φ5

 q−n, qn+a, qb, −qb, qa/2eiθ, q1/2 ae−iθ

q2b, q(a+1)/2, −q(a+1)/2, −qa/2, −qa/2 ; q, q


=

n∑
j=0

(q−n, qn+a, qa/2, qa/2eiθ, qa/2e−iθ; q)j

(q, q(a+1)/2, −q(a+1)/2, −qa/2, qj+a−1; q)j
(−1)jqj+(j

2)

· 5φ4

 qj−n, qn+j+a, qj+a/2, qj+a/2eiθ, qj+a/2e−iθ

q2j+a, qj+(a+1)/2, −qj+(a+1)/2, −qj+a/2 ; q, q


· 4φ3

 q−j , qj+a−1, qb, −qb

q2b, qa/2, −qa/2 ; q, q


=

[n/2]∑
k=0

(q−n, qn+a, qa/2, qa/2eiθ, qa/2e−iθ; q)2k

(q, q(a+1)/2, −q(a+1)/2, −q
1
2 a, q2k+a−1; q)2k

· (q, qa−2b; q2)k

(qa, q2b+1; q2)k
q2k2+k+2kb

·
4φ3

 q2k−n, qn+2k+a, qk+a/4eiθ/2, qk+a/4e−iθ/2

q2k+(a+1)/2, −q2k+(a+1)/2, −q2k+a/2 ; q, q


2

by (3.14) and (3.8). Hence,

(3.18) 6φ5

[
q−n, qn+a, qb, −qb, qa/2eiθ, qa/2e−iθ

q2b, q(a+1)/2, −q(a+1)/2, −qa/2, −qa/2 ; q, q
]

≥ 0

when a ≥ 2b > −1 and 0 < q < 1, which is a q-extension of (3.6) that is different from
(3.16). The expansions (8.12) and (8.17) in [18] are special cases of the q ↑ 1 limit cases of
(3.15) and (3.17), respectively, when (2.15) and [18, (8.10)] are used.
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A q-extension of (3.9) can be derived by using (3.12) and (2.15) to obtain the expansion
(3.19)

7φ6

 q−n, qn+α+2, q(α+1)/2, q(α+1)/2e2iθ, q(α+1)/2e−2iθ, q(α+2)/2e2iτ , q(α+2)/2e−2iτ

qα+1, q(α+3)/2, −q(α+3)/2, −q(α+2)/2, −q(α+2)/2, −q(α+1)/2 ; q, q


=

n∑
j=0

(q−n, qn+α+2, q(α+2)/2, q(α+2)/2e2iτ , q(α+2)/2e−2iτ ; q)j

(q, q(α+3)/2, −q(α+3)/2, −q(α+2)/2, qj+α+1; q)j
(−1)jqj+(j

2)

·
{

(q; q)j(q; q)n−j

(qα+1; q)j(q2j+α+2; q)n−j
q1/2 (j+α+3/2)

· Cj(cos θ; q(α+1)/2 | q)Cn−j(cos τ ; qj+(α+2)/2 | q)
}2

,

which is clearly nonnegative for real θ and τ when α > −2. The case α = −2 can be
handled as a limit case of (qα+2; q)n times the 7φ6 series in (3.19); see [4, p. 720] for the
hypergeometric case.

Additional nonnegative sums and, in particular, the nonnegativity of q-extensions of
the sums of Jacobi polynomials in [18, (8.19), (8.20), (8.22)] will be considered in [23].

4. q-Extensions of de Branges’ differential equations. From (3.3) and the identity
(a)n = Γ(n + a)

/
Γ(a) it follows that

σn(t) = c
n!(2ν + 2λ + 1)n+r4−nt−n

(r − n)!(ν + 1)n(2ν + 1)n(ν + λ + 1)n

(4.1)

· 4F3

[
n − r, n + r + 2ν + 2λ + 1, n + ν + 1/2, n + 2ν

2n + 2ν + 1, n + ν + λ + 1, n + 2ν + 1
; t−1

]

for n = 1, . . . , r with c = Γ(2ν + 2λ + 1)
/
[Γ(ν + 1)Γ(2ν + 1)Γ(ν + λ + 1)]. In view of the

limit (3.7), we set t = 2
/
(1 − x) and consider the functions

(4.2) τn(x) = c−1σn

(
2

1 − x

)
.

Then de Branges’ differential equation (3.4) is equivalent to

(4.3)
n

n + 2ν
τn(x) +

1 − x

n + 2ν
τ ′
n(x) =

n + 2ν + 1
n + 1

τn+1(x) − 1 − x

n + 1
τ ′
n+1(x)

which can be rewritten in the form

(4.4)
d

dx
[(1 − x)−nτn(x)] = −n + 2ν

n + 1
(1 − x)−2n−2ν−1 d

dx
[(1 − x)n+2ν+1τn+1(x)].
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Let 0 < q < 1, x = cos θ and let a, α, λ, ν, θ be real numbers. A q-extension of
(1 − x)α can be obtained by extending the definition of the q-shifted factorial to

(4.5) (a; q)α =
(a; q)∞

(aqα; q)∞

and observing that, by the q-binomial theorem [38, (3.2.2.11)],

(4.6) lim
q→1

2−α(qaeiθ, qae−iθ; q)α = (1 − x)α.

Hence, if we define

(4.7) un(x) = An,r(qν+1eiθ, qν+1e−iθ; q)n

·6φ5

 qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, qn+2ν , qn+ν+1eiθ, qn+ν+1e−iθ

q2n+2ν+1, qn+ν+λ+1, qn+2ν+1, −qn+ν+λ+1, −qn+ν+1/2 ; q, q


with

(4.8) An,r =
(q; q)n(q2ν+2λ+1; q)n+r4−2n

(q; q)r−n(qν+1, q2ν+1, qν+λ+1; q)n
, n = 1, . . . , r,

and An,r = 0 when n > r, then

(4.9) lim
q→1

un(x) = τn(x).

To obtain a q-extension of differentiation that plays the same role for (aeiθ, ae−iθ; q)n

as d/dx does for xn, Askey and Wilson [7, p. 33] defined the operators δq and Dq by

δqf(eiθ) = f(q1/2eiθ) − f(q−1/2eiθ), (4.10)

Dqh(x) =
δqh(x)

δqx
, (4.11)

where x = (eiθ + e−iθ)
/
2 = cos θ, and observed that

(4.12) δq(aeiθ, ae−iθ; q)n = aq−1/2(1 − qn)(eiθ − e−iθ)(aq1/2eiθ, aq1/2e−iθ; q)n−1

and

(4.13)
δq

∏n−1
k=0(1 − 2axqk + a2q2k)

δqx
=

−2a(1 − qn)
1 − q

n−2∏
k=0

(1 − 2axqk+1/2 + a2q2k+1).

They noted that when q → 1 formula (4.13) becomes

(4.14)
d

dx
(1 − 2ax + a2)n = −2an(1 − 2ax + a2)n−1
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and more generally,

(4.15) lim
q→1

Dqh(x) = lim
q→1

δqh(x)
δqx

=
df(x)
dx

.

To derive a q-extension of (4.4) and the inequalities (3.5), first observe that (4.12)
extends to

(4.16) δq(aeiθ, ae−iθ; q)α = aq−1/2(1 − qα)(eiθ − e−iθ)(aq1/2eiθ, aq1/2e−iθ; q)α−1,

which gives

(4.17) Dq(aeiθ, ae−iθ; q)α =
−2a(1 − qα)

1 − q
(aq1/2eiθ, aq1/2e−iθ; q)α−1.

Hence, corresponding to the inequality (3.5), we have that

(4.18) Dq[(q1−νeiθ, q1−νe−iθ; q)2νun(x)]

= An,r

r−n∑
k=0

(qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, qn+2ν ; q)kqk

(q, q2n+2ν+1, qn+ν+λ+1, qn+2ν+1, −qn+ν+λ+1, −qn+ν+1/2; q)k

· Dq[(q1−νeiθ, q1−νe−iθ; q)n+k+2ν ]

= −2(1 − qn+2ν)
1 − q

q1−νAn,r(q
3
2 −νeiθ, q

3
2 −νe−iθ; q)n+2ν−1

·5φ4

 qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, qn+ν+1/2eiθ, qn+ν+1/2e−iθ

q2n+2ν+1, qn+ν+λ+1, −qn+ν+λ+1, −qn+ν+1/2 ; q, q

 ≤ 0

by (3.16), when ν > −1/2, λ ≥ 0 and n = 1, . . . , r. This explains why we chose the 6φ5 in
(4.7).

To derive a q-extension of (4.4) notice that, corresponding to the left side of (4.4), we
have

(4.19)

Dq[(qn+ν+1eiθ, qn+ν+1e−iθ; q)−nun(x)] = An,r

· Dq

6φ5

 qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, qn+2ν , qn+ν+1eiθ, qn+ν+1e−iθ

q2n+2ν+1, qn+ν+λ+1, qn+2ν+1, −qn+ν+λ+1, −qn+ν+1/2 ; q, q


=

(1 − qn−r)(1 − qn+r+2ν+2λ+1)(1 − qn+ν+1/2)(1 − qn+2ν)(−2)qn+ν+2

(1 − q)(1 − q2n+2ν+1)(1 − qn+ν+λ+1)(1 − qn+2ν+1)(1 + qn+ν+λ+1)(1 + qn+ν+1/2)
An,r

· 6φ5

 qn+1−r, qn+r+2ν+2λ+2, qn+ν+3/2, qn+2ν+1, qn+ν+3/2eiθ, qn+ν+3/2e−iθ

q2n+2ν+2, qn+ν+λ+2, qn+2ν+2, −qn+ν+λ+2, −qn+ν+3/2 ; q, q

 .
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Similarly,

(4.20)

(qn+ν+3/2eiθ, qn+ν+3/2e−iθ; q)−2n−2ν−1Dq[(q−n−νeiθ, q−n−νe−iθ; q)n+2ν+1un+1(x)]

= −2(1 − q2n+2ν+2)
1 − q

q−n−νAn+1,r

· 6φ5

 qn+1−r, qn+r+2ν+2λ+2, qn+ν+3/2, qn+2ν+1, qn+ν+3/2eiθ, qn+ν+3/2e−iθ

q2n+2ν+2, qn+ν+λ+2, qn+2ν+2, −qn+ν+λ+2, −qn+ν+3/2 ; q, q

 ,

which, combined with (4.19), gives the following q-extension of (4.4)

(4.21) Dq[(qn+ν+1eiθ, qn+ν+1e−iθ; q)−nun(x)]

= −1 − qn+2ν

1 − qn+1 Bn,r(qn+ν+3/2eiθ, qn+ν+3/2e−iθ; q)−2n−2ν−1

· Dq[(q−n−νeiθ, q−n−νe−iθ; q)n+2ν+1un+1(x)]

with

(4.22) Bn,r =
16q3n−r+2ν+2

(1 + qn+ν+λ+1)(1 + qn+ν+1)(1 + qn+ν+1/2)2
.

Clearly, Bn,r → 1 and (4.21) tends to (4.4) as q → 1; but, unlike (4.4), the difference
equation (4.21) depends on r. However, if we consider following positive multiple of un

(4.23) Un(x) =
42nq3n2/2+n(2ν+1/2−r)

(−qν+λ+1, −qν+1, −qν+1/2, −qν+1/2; q)n
un(x),

we find that it satisfies the difference equation

(4.24) Dq[(qn+ν+1eiθ, qn+ν+1e−iθ; q)−nUn(x)]

= −1 − qn+2ν

1 − qn+1 (qn+ν+3/2eiθ, qn+ν+3/2e−iθ; q)−2n−2ν−1

· Dq[(q−n−νeiθ, q−n−νe−iθ; q)n+2ν+1Un+1(x)],

which is independent of r.
Similarly, setting

(4.25)

Vn(x) = Cn,r(qν+λ+1eiθ, qν+λ+1e−iθ; q)n

· 7φ6

 qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, −qn+ν+1/2, qn+2ν , qn+ν+λ+1eiθ, qn+ν+λ+1e−iθ

q2n+2ν+1, qn+ν+λ+1, −qn+ν+λ+1, qn+2ν+1, −qn+ν+λ+1/2, −qn+ν+λ+1/2 ; q, q
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with

(4.26) Cn,r =
(q; q)n(q2ν+2λ+1; q)n+rq

3n2/2+n(2ν+1/2−r)

(q; q)r−n(qν+1, q2ν+1, qν+λ+1, −qν+1, −qν+λ+1, −qν+λ+1/2, −qν+λ+1/2; q)n

when n = 1, . . . , r and Cn,r = 0 when n > r, we obtain that Vn(x) → τn(x) as q → 1,
Vn(x) satisfies the following q-extension of (4.4)

(4.27) Dq[(qn+ν+λ+1eiθ, qn+ν+λ+1e−iθ; q)−nVn(x)]

= −1 − qn+2ν

1 − qn+1 (qn+ν+λ+3/2eiθ, qn+ν+λ+3/2e−iθ; q)−2n−2ν−1

· Dq[(q−n−ν+λeiθ, q−n−ν+λe−iθ; q)n+2ν+1Vn+1(x)]

and, by (3.18),

(4.28)

Dq[(q1+λ−νeiθ, q1+λ−νe−iθ; q)2νVn(x)] = −2(1 − qn+2ν)
1 − q

q1+λ−νCn,r

· (qλ+3/2−νeiθ, qλ+3/2−νe−iθ; q)n+2ν−1

· 6φ5

 qn−r, qn+r+2ν+2λ+1, qn+ν+1/2, −qn+ν+1/2, qn+ν+λ+1/2eiθ, qn+ν+λ+1/2e−iθ

q2n+2ν+1, qn+ν+λ+1, −qn+ν+λ+1, −qn+ν+λ+1/2, −qn+ν+λ+1/2 ; q, q

 ≤ 0

when ν > −1/2, λ ≥ 0 and n = 1, . . . , r.
The q-extensions of de Branges’ inequalities and differential equations contained in

this paper suggest that it might be possible to extend some of the other parts of his proof
of the Bieberbach, Robertson, and Milin conjectures. Besides (1.2) and (1.7), de Branges
also used the fact that if F (t, z) is a Löwner family of Riemann mapping functions, then

(4.29) t
∂

∂t
F (t, z) = ϕ(t, z)z

∂

∂z
F (t, z),

where ϕ(t, z) is a power series with constant coefficient equal to 1, which represents a
function with positive real part in the unit disk for every index t, and the coefficients of
ϕ(t, z) are measurable functions of t. q-Extensions of the Löwner [29] theory and of the
coefficient estimates for Riemann mapping functions in [12] and [13, Thms. 1–4] are still
open. In view of the definition of Dq in (4.11), a prospect for a q-extension of (4.29) is the
equation

(4.30) (1 − x)DqG(x, z) = Φ(x, z)z
∂

∂z
G(x, z)

or this equation with the partial derivative replaced by a difference operator. For an
extremal function that is a q-extension of the Koebe function, the 1F0 series representation
for the Koebe function

(4.31) k(z) =
z

(1 − z)2
= z 1F0

[
2
− ; z

]
17



suggests that a natural choice is the “q-Koebe” function

(4.32) kq(z) = z 1φ0

[
q2

− ; q, z
]

=
z

(1 − z)(1 − qz)
.

Note that, just as the Koebe function is starlike, kq(z) is a starlike function when −1 <
q < 1, which can be shown by using [16, Thm. 2.10] and the positivity of the Poisson
kernel for Fourier series.
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