PSEUDO-REPRESENTATIONS OF WEIGHT ONE

FRANK CALEGARI AND JOEL SPECTER

Abstract. We prove that the determinant (generalized pseudocharacter) associated to the Hecke algebra of Katz modular forms of weight one and level prime to p is unramified at p.

Contents

1. Introduction 1
2. Determinants 3
 2.1. Unramified Determinants 4
 2.2. Ordinary Determinants 7
 2.3. A Criterion for Unramifiedness 13
3. Application: weight-one modular determinants are unramifed at p 16
4. Upper Triangular Determinants 20
References 22

1. Introduction

Let p be prime, and let $N \geq 5$ be an integer prime to p. Let $X_1(N)$ be the modular curve considered as a smooth proper curve over $\text{Spec}(\mathbb{Z}_p)$, and let ω be the pushforward of the relative dualizing sheaf from the universal elliptic curve $E/X_1(N)$. For general m, one knows that the map:

$$H^0(X_1(N), \omega) \to H^0(X_1(N), \omega/p^m\omega)$$

need not be surjective. In particular, if T_1 denotes the \mathbb{Z}_p-subalgebra of

$$\text{End}(\lim_{\to} H^0(X_1(N), \omega/p^m\omega)) = \text{End}(H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)) \simeq \text{End}(H^1(X_1(N), \omega(\infty))),$$

generated by the Hecke operators T_n and $\langle n \rangle$ for $(n, N) = 1$, then T_1 may be bigger than the classical Hecke algebra acting on $H^0(X_1(N), \omega)$. Our main theorem is as follows:

Theorem 1.1. Let T_1 be the \mathbb{Z}_p-subalgebra of $\text{End}_\mathbb{Z}_p(H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p))$ generated by the Hecke operators T_n and $\langle n \rangle$ for all n prime to N. There is a determinant:

$$D_1 : T_1[G\mathbb{Q}] \to T_1,$$

of degree 2, which is unramified\footnote{If $G_{\mathbb{Q},S}$ denotes the Galois group of the maximal extension of \mathbb{Q} unramified outside the set S of places consisting of ∞ and the primes dividing N, then the condition that D_1 is unramified outside N is equivalent to saying that D_1 factors through $T_1[G_{\mathbb{Q},S}]$.} at all l prime to N, including $l = p$, such that the characteristic polynomial of any Frobenius element at l equals:

$$P_{D_1, \text{Frob}_l}(X) = 1 - T_l X + \langle l \rangle X^2.$$
The Hecke algebra T_1 is a semi-local ring. If $m \subset T_1$ is a maximal ideal, then the base change of D_1 to T_1/m arises from a semi-simple Galois representation $\overline{\rho}$ valued in the algebraic closure of T_1/m [Che14, Theorem 2.12]. If this representation is irreducible, then, by a theorem of Carayol [Car94], the base change of D_1 to the localization $T_m := (T_1)_m$ arises from a semi-simple Galois representation $\rho : G_\mathbb{Q} \to \text{GL}_2(T_m)$. Our theorem shows this representation is unramified at p. For $p > 2$, this is a consequence of Theorem 3.11 of [CG]. Hence the main interest of our result is to residually reducible representations. However, the result is new even for absolutely irreducible representations when $p = 2$ (although there are significant partial results by Wiese [Wie14]). Although the proof of Theorem 1.1 is similar to that of Theorem 3.11 of ibid, it is more direct, and does not rely on any explicit analysis of the ordinary deformation rings of Snowden [Sno]. Hence this paper can also be seen as providing a simplification of the proof of Theorem 3.11 of ibid.

Part of the content of this note is that we will give the general definition of what it means for a determinant to be ordinary. If $V/\overline{\mathbb{Q}}_p$ is an n dimensional representation of $G_\mathbb{Q}$ and $w := (w_1, \ldots, w_n)$ is a non-decreasing sequence of integers, we say that V is ordinary of weight w, if there exists a complete $G_\mathbb{Q}_p$-stable flag on V such that the action of the inertia group at p on the i-th component of the associated graded representation is through the w_i-th power of the cyclotomic character. In Definition 2.2.1, we say what it means for a determinant to be ordinary of weight w. By Theorem 2.2.3, ordinary, $\overline{\mathbb{Q}}_p$-valued determinants are in bijection with finite-dimensional, semi-simple p-adic $G_\mathbb{Q}$-representations which are ordinary in the classical sense.

Carl Wang Erickson [WE, §7.3] has given a definition of ordinarity for 2-dimensional pseudo-representations (determinants) under an assumption of locally p-distinguishedness (see also [WWE15, Definition 3.4.1] and [CV03, §3]). We expect — but have not checked — that our definition agrees with his in this setting. However, for our application, it is important that we be able to work in non-p-distinguished situations; the definition we give accommodates for this. It would also be interesting to check, in the context where the associated residual determinant is associated to a globally irreducible representation $\overline{\rho}$, whether our definition of ordinary coincides with the purely local condition given by David Geraghty [Ger].

The construction of the determinant $D_1 : T_1[G_\mathbb{Q}] \to T_1$ without any condition at p is a standard application of p-adic interpolation. There is a determinant valued in a weight one p-adic Hecke algebra which is constructed by interpolating the determinants attached to modular Galois representations in cohomological weight. The determinant D_1 is obtained from this determinant via specialization.

The main content of Theorem 1.1 is that D_1 is unramified at p. In section 2.3, we will establish a general criterion to check if an ordinary determinant of degree n and weight 0 is unramified at p. If V is a p-distinguished representation and $\phi \in G_\mathbb{Q}$ is a Frobenius element at p, then any ordinary flag on V gives rise to a complete ordering of the roots of the characteristic polynomial of ϕ. The representation V is unramified if and only if every possible ordering can be obtained from some ordinary flag. Our criteria for unramifiedness (Theorem 2.3.1) is an appropriate generalization of this equivalence beyond the p-distinguished case. The proof that D_1 is unramified will proceed by first showing D_1 is ordinary, and then showing that D_1 satisfies this criterion.

While, in this note, we will be interested in ordinary determinants, our constructions equally apply to any determinant which is upper triangular and has some fixed graded inertial
representation. In the final section, we discuss the behavior of D_1 for the primes that exactly divide N. At semi-stable level, we show the full weight-one Hecke algebra is the quotient of (and conjecturally isomorphic to) a certain pseudo-deformation ring with extra structure.

2. Determinants

Let G be a group and A be a ring. If M is a free, finite rank A-module equipped with a linear G action, then one may consider the family of characteristic polynomials associated to the elements of G. This family is a strong invariant of a representation. For example, if A is an an algebraically closed field, the family of characteristic polynomials determines the representation uniquely up to semi-simplification.

In this section, we recall the notion of a determinant as given by Ga" etan Chenevier [Che14 pg. 3]. The polynomials that occur in a family of characteristic polynomials are highly interdependent. Informally, one may regard a determinant as a family of polynomials, which satisfy many of those relations that occur in a family of characteristic polynomials. Rather than attempt to describe the relations in this family directly, the insight behind the definition of a determinant is that one can enlarge such a family to include certain elements that generalize the characteristic polynomial’s construction, and then use these cousins to the characteristic polynomials to succinctly express relations in the original family.

The characteristic polynomial of an element $g \in G$ is by definition the determinant of the endomorphism $X-g$ acting on $M \otimes_A A[X]$. To enlarge the family of characteristic polynomials, Chenevier records, for every A-algebra B and every element $x \in B[G]$, the determinant of x acting on $M \otimes_A B$. This enlarged family can be organized as a series of set theoretic maps $\det : B[G] \to B$, one for each A-algebra B, which satisfy the following compatibilities:

1. The maps \det are natural in B.
2. $\det(1) = 1$ and the element $\det(xy) = \det(x) \det(y)$ for all $x, y \in B[G]$.
3. $\det(bx) = b^n \det(x)$, where $b \in B$ and n is equal to the rank of M.

A determinant is simply a family of maps which are compatible in these three ways.

Definition 2.0.1. Let A be a ring, G be a topological group, and n be a positive integer. A degree n determinant is a continuous A-valued polynomial law $D : A[G] \to A$, which is multiplicative and homogeneous of degree d. If B is an A-algebra and $m \in B[G]$, we call $P_{D,m}(X) := D(1 - mX) \in A[X]$ the characteristic polynomial of m.

Enlarging a family of characteristic polynomials attached to a representation to a determinant is a superficial procedure. There is a formula of Shimshon Amitsur, which expresses the classical determinant of the sum of two elements in a matrix algebra (over any ring) in terms of the coefficients in the characteristic polynomials of various products [Ami80, Theorems A and B, pg. 179,182]. Given a family of characteristic polynomials $P_{D,g}$, with $g \in G$, one

2 All rings considered in this note will carry a Hausdorff topology, and, with the exception of group rings, will be commutative. Our terminology will suppress these topological and algebraic considerations. We use the terms module and algebra to denote a Hausdorff topological module and a commutative, Hausdorff topological algebra, respectively.

3 An A-valued polynomial law between two A-modules M and N is by definition a natural transformation $N \otimes_A B \to M \otimes_A B$ on the category of commutative A-algebras B. A polynomial law is called multiplicative if $D(1) = 1$ and $D(xy) = D(x)D(y)$ for all $x, y \in A[G] \otimes B$, and is called homogeneous of degree d, if $D(xb) = b^dD(x)$ for all $x \in A[G] \otimes B$ and $b \in B$. A polynomial law is called continuous if its characteristic polynomial map on G given by $g \mapsto P_{D,g}$ is continuous.
may use Amistur’s formulae to recover the full determinant. The only function of enlarging a family of characteristic polynomials to a determinant is to express certain relations in the original family simply and elegantly.

A general determinant has a similar anatomy. First, given any A-algebra B, one may show for each $m \in B[G]$,

$$P_{D,m}(X) = 1 + \sum_{i=1}^{d} (-1)^ic_i(m)X^i,$$

where $c_i(m) \in B$ and d is the degree of D. Each coefficient map $m \mapsto c_i(m)$ defines an A-valued homogeneous polynomial of degree i. The coefficient c_i satisfies Amistur’s formula (see formula [2.1]), and using this formula one may show that a determinant is uniquely determined by its set of characteristic polynomials $P_{D,g}$, with $g \in G$.

Given a determinant $D : A[G] \to A$, one may specialize D to the category of algebras over any fixed A-algebra B. The result is a determinant $D_B : B[G] \to B$. If F is an algebraically closed field, then [Che14, Theorem 2.12] states that all F-valued determinants arise from a unique semi-simple representation of G. The determinant D, therefore, provides a means to associate to any geometric point of Spec(A) a semi-simple representation of G; to the point $\pi : A \to F$, one associates the representation with determinant $D_\pi := D_F$. The determinant D interpolates between these specializations. In light of this, one may regard Spec(A) as coarsely parameterizing a family of semi-simple representations of G – the parametrization and specific representations being determined by D.

If one thinks of Spec(A) in this way, it is natural to try to define sub-loci, which coarsely parameterize subfamilies of representations with certain properties. If P is a property of n-dimensional representations of G, then we say P can be interpolated, if for any determinant $D : A[G] \to A$ there exists a closed subscheme Spec(A^P) \subset Spec(A), which is natural in A and whose geometric points consist exactly of the geometric points of Spec(A) with property P. The endofunctor $(A, D) \mapsto (A^P, D_{A^P})$ is called an interpolation of P. In general, a property may admit many interpolations. In what follows, we will choose specific interpolations for the properties we study. We will say D has property P, if $A^P = A$.

Let G_Q be the absolute Galois group of Q. In this note, we are interested in the local properties at p of the determinants on G_Q valued in the p-adic completions of weight one Hecke algebras. The p-adic Galois representation attached to any classical weight one Eigenform of level prime to p is unramified at p. In the next section, we describe an interpolation of “unramifiedness at p” due to Chenevier. The goal of this note will be to show that the degree 2 determinants attached to weight one Hecke algebras are unramified at p.

2.1. Unramified Determinants. Let G be any (topological) group and V/F be a finite dimensional representation of G. Let $h \in G$. What relations occur in the family of characteristic polynomials attached to G by its action on V, if the element h acts by the identity on V?

Above, we saw that relations in a family of characteristic polynomials can be more easily expressed by extending that family to a determinant. The same holds here. If B be an F-algebra and h lies in the kernel of a representation V, then $h - 1$ acts by 0 on $V \otimes B$. So for any $b \in B$ and $y \in B[G]$, the endomorphism $b(h - 1) + y$ acts by y on $V \otimes_B B$. It follows $\det(b(h - 1) + y) = \det(y)$. The converse is true if V is an irreducible representation over an algebraically closed field. In this case, if $x \in F[G]$ and $\det(bx + y) = \det(y)$ for all F-algebras B and elements $b \in B$ and $y \in B[G]$, then x acts by 0.

For a general determinant, Chenevier defines the kernel as:
For a proof that Amistur’s formulae hold, we refer the reader to [Che14, Lemma 1.12].

\[D(bx + y) = D(y). \]

If \(D \) arises from a semi-simple representation \(\rho : G \rightarrow GL_n(F) \) valued in an algebraically closed field, then \(h \in G \) lies in \(\ker(\rho) \), if and only if \(1 - h \in \ker(D) \). For a determinant with coefficients in a general commutative ring, lemma 1.9 of [Che14] states that the kernel of \(D \) is a two-sided ideal of \(A[G] \), and consists of those elements \(m \in A[G] \) such that for any \(A \)-algebra \(B \), and element \(x \in B[G] \), the characteristic polynomial \(P_{D,mx}(X) = 1 \). In fact, as the next lemma shows, to verify if \(m \in \ker(D) \), it is enough to check \(P_{D,mx}(X) = 1 \) only for those elements \(x \in A[G] \).

Lemma 2.1.2. Let \(D : A[G] \rightarrow A \) be a determinant. An element \(m \in A[G] \) lies in \(\ker(D) \) if and only if \(P_{D,mx}(X) = 1 \) for all \(x \in A[G] \).

To prove this lemma, we will use Amistur’s formulae.

Digression: Amistur’s Formulae. Amistur’s formulae express the value of the characteristic polynomial coefficients of a sum of elements in terms of the characteristic polynomial coefficients of certain products of those elements. The specific products are Lyndon words on the elements. We begin by reminding the reader of the definition and key properties of Lyndon words.

Let \(k \) be a positive integer, \(X := \{ x_1 < x_2 < \cdots < x_k \} \) be a totally ordered alphabet, and \(X^+ \) be the free monoid generated by \(X \). The monoid \(X^+ \) is totally ordered via the lexicographic ordering. For each integer \(d \), there is an action of the symmetric group \(S_d \) on \(d \) letters on the words of \(X^+ \) of length \(d \); an element \(\sigma \in S_d \) maps \(x_{i_1} \cdots x_{i_k} \) to \(x_{i_{\sigma(1)}} \cdots x_{i_{\sigma(d)}} \).

If \(w \) is a word of length \(d \), we call a word \(w' \) of length \(d \) a rotation of \(w \), if it is the image of \(w \) under some power of the \(d \)-cycle \((12\cdots d)\). We denote the length of a word \(w \in X^+ \) by \(l(w) \).

A maximum element in a set of rotations is called a Lyndon word. The Chen–Fox–Lyndon factorization theorem states that every word \(w \in X^+ \) factors uniquely as a product of Lyndon words \(w = w_1 w_2 \cdots w_d \) such that \(w_1 \geq w_2 \geq \cdots \geq w_d \) [CFL58]. Given a word \(w \) with Lyndon factorization \(w_1 w_2 \cdots w_d \), we define the sign of \(w \), as the product \(\text{sign}(w) := \prod_{i=1}^{d} (-1)^{l(w_i) - 1} \).

We now state Amistur’s formulae. Let \(G \) be any topological group, \(D : A[G] \rightarrow A \) be a determinant of degree \(n \), and \(B \) be an \(A \)-algebra. Let \(x_1, \ldots, x_k \in B[G] \). If \(w \) is a word on \(x_1, \ldots, x_k \) with Lyndon factorization \(w_1^{e_1} \cdots w_d^{e_d} \) with \(w_1 > w_2 > \cdots > w_d \), we define

\[c(w) := \prod_{i=1}^{d} c_{x_i}(w_i) \text{ if } \in B. \]

For each positive integer \(i \leq n \), let \(L_i \) be the set of words on \(x_1, \ldots, x_k \) of length \(i \). Amistur’s formula states:

\[c_i(x_1 + \cdots + x_n) = \sum_{w \in L_i} \text{sign}(w)c(w). \]

For a proof that Amistur’s formulae hold, we refer the reader to [Che14 Lemma 1.12].
Proof of Lemma 2.1.2. Let W_m be the set of words on the alphabet $G \cup \{m\}$ which contain m as a letter. Fix an A-algebra B, and let Z be the ideal of B generated by the value of the coefficients $c_i(w)$ of $P_{D,w}$ for all $w \in W$ and $i \geq 1$. Let $x' = \sum_{g \in C} b_g g \in B[G]$. By Artin’s formulae and homogeneity of the coefficients c_i, one sees that $c_i(mx')$ lies in Z. Let $w := w_1mw_2 \in W_m$, we claim $c_i(w) = c_i(mw_2w_1)$. Assuming this, one observes that if $c_i(mx) = 0$ for all $x \in A[G]$, then $Z = 0$ and hence $m \in \ker(D)$.

That $c_i(w) = c_i(mw_2w_1)$ is a consequence of the following general fact:

Claim 1. Let $x, y \in A[G]$ then $P_{D,xy}(X) = P_{D,yx}(X)$.

The proof of the claim is standard from linear algebra. If $x \in A[G]$ is invertible, then:

$$P_{D,xy}(X) = D(1 + xyX) = D(x^{-1} + yX)D(x) = D(x)D(x^{-1} + yX) = P_{D,yx}(X).$$

To argue the general case, one makes the following “limiting argument.” Let $A[\epsilon]$ be a polynomial ring over A. Then $x' = (1 + \epsilon x)$ is invertible in $A[\epsilon][G_Q]/\epsilon^k$ for all k, and so the argument in equation (2.2) shows:

$$D(1 + x'yt) = D(1 + yx't)$$

in $A[t, \epsilon]/\epsilon^k$ for all k. By the naturally of D, it follows $D(1 + x'yt) = D(1 + yx't)$ in $A[\epsilon, t]$. Substituting along the map $A[t, \epsilon] \rightarrow A[t, \epsilon^\pm]$ which sends t to $\epsilon^{-1}t$, we observe:

$$D(1 + (\epsilon + x)yt) = D(1 + y(\epsilon + x)t) \in A[t, \epsilon^\pm].$$

Again invoking the naturality of D, we have $D(1 + (\epsilon + x)yt) = D(1 + y(\epsilon + x)t) \in A[t, \epsilon]$. Evaluating ϵ at 0, we conclude:

$$P_{D,xy}(X) = P_{D,yx}(X).$$

The previous lemma is an answer to our question: an element $1 - h$ lies in the kernel of a determinant if and only if, each of the characteristic polynomial coefficients $c_i((1 - h)x)$ vanish for all $x \in A[G]$. Let H be a subgroup of G. Define $A^{H=1}$ to be the quotient of A by the closure of the ideal generated by $c_i((1 - h)x)$ for all $h \in H$, and $x \in A[G]$ and $i \in \mathbb{Z}_+$. Then the property that “H lies in the kernel of the representation” is interpolated by $A^{H=1}$.

In particular, one may interpolate the property of “unramifiedness at p.” Towards this end, fix, once and for all, an embedding of \overline{Q} into \overline{Q}_p, and hence an identification of G_{Q_p} with a decomposition subgroup of G_Q. Let I_p denote the inertia group at p. Let $D: A[G_Q] \rightarrow A$ be a determinant and define $A^{un} := A^{I_p=1}$. The algebra A^{un} interpolates the property of representations being unramified. We say a determinant is unramified if $A^{un} = A$. From this discussion, one may easily deduce the following:

Lemma 2.1.3. A determinant $D: A[G] \rightarrow A$ whose kernel contains $h - 1$ for all $h \in H \subset G$ factors through $A[G/N]$, where N is the normal closure of H in G.

Unramifiedness for determinants is not a local property, i.e. it is not the case that one can determine if a determinant is unramified given only the restriction of that determinant to a decomposition group at p. This is true even for determinants valued in algebraically closed fields; if V is a finite dimensional, irreducible representation defined over an algebraically closed field, the list of characteristic polynomials for each element in G_{Q_p} is in general not sufficient to determine if that representation is unramified. What can be determined from this list of characteristic polynomials is if the semi-simplification of the local representation
is unramified, i.e. if there is a complete $G_{\mathbb{Q}_p}$-stable flag on V such that the associated graded representation is unramified.

Classically, a p-adic representation V/\mathbb{Q}_p of $G_{\mathbb{Q}}$ is called ordinary if V admits a complete $G_{\mathbb{Q}_p}$-stable flag such that the restriction of the associated graded representation to I_p is a monotonically non-decreasing sequence of powers of the cyclotomic character. The sequence of powers $(w_1, \ldots, w_n) \in \mathbb{Z}^n$ of the cyclotomic character by which I_p acts is called the weight. Those representations that are ordinary of weight $(0, \ldots, 0)$ are exactly those whose local representation at p have an unramified semi-simplification.

In the next section, we will proceed by first showing that such determinants are ordinary of weight $(0, \ldots, 0)$ and then applying this criterion.

2.2. Ordinary Determinants. Let V be an n-dimensional p-adic representation of $G_{\mathbb{Q}_p}$. Recall that V is said to be ordinary if there exists a sequence of non-decreasing integers (w_1, \ldots, w_n) and a $G_{\mathbb{Q}_p}$-stable filtration of V:

$$0 = F_{n+1}V \subseteq F_{n-1}V \subseteq F_2V \subseteq \cdots \subseteq F_1V = V,$$

such that the graded subquotients $F_iV/F_{i+1}V$ are one dimensional and the inertia group I_p acts on $F_iV/F_{i+1}V$ by the w_i-th power of the cyclotomic character. We call such a filtration an ordinary flag on V (of weight (w_1, \ldots, w_n)). A p-adic representation of $G_{\mathbb{Q}}$ is called ordinary if its local representation at p is ordinary. In this section, we give a condition on the family of characteristic polynomials associated to a semi-simple $G_{\mathbb{Q}}$-representation which guarantee that that representation is ordinary. In other words, we define what it means for a determinant to be ordinary.

The notion of ordinarity for representations depends on an auxiliary piece of information: the existence of an ordinary flag. If one wishes to express which relations occur in a family of characteristic polynomials associated to an ordinary representation, one should preliminarily do so with a fixed choice of ordinary flag. Let be F_1 be an ordinary flag on V. From F_1 one obtains an ordered sequence of characters (χ_1, \ldots, χ_n) of $G_{\mathbb{Q}_p}$; the action of $G_{\mathbb{Q}_p}$ on the graded quotient $F_iV/F_{i+1}V$ being through χ_i. The collection of characters (χ_1, \ldots, χ_n) determines the characteristic polynomials of every element $g \in G_{\mathbb{Q}_p}$. Specifically,

$$P_{D,g}(X) = \prod_{i=1}^{d} (1 - \chi_i(g)X).$$

However, this relation only depends on the semi-simplification of $V|_{G_{\mathbb{Q}_p}}$, and therefore does not depend on the choice of ordinary flag.

To see relations imposed by the choice of flag F_1 one must consider the characteristic polynomials of elements in $\overline{\mathbb{Q}}_p[G_{\mathbb{Q}}]$ outside $\overline{\mathbb{Q}}_p[G_{\mathbb{Q}_p}]$. Observe for each i and any sequence of elements $g_1, \ldots, g_n \in G_{\mathbb{Q}_p}$, the image

$$(g_i - \chi_i(g_i)) \cdots (g_1 - \chi_1(g_1))V \subset F_1V.$$
Since, F_iV is an $n + 1 - i$ dimensional subspace of the n dimensional space V, given any operator $m \in \text{End}(V)$, the operator

$$(g_i - \chi_i(g_i)) \cdots (g_1 - \chi_1(g_1))^m$$

has 0 as an eigenvalue with multiplicity at least i. It follows that the trailing i coefficients of the characteristic polynomial of

$$(g_i - \chi_i(g_i)) \cdots (g_1 - \chi_1(g_1))^m$$

must vanish for all m in the group ring of $G\mathbb{Q}$.

We record these conditions as our interpolation of ordinariness. Let $\epsilon : G\mathbb{Q} \to \mathbb{Z}_p^\times$ be the cyclotomic character and W_p be the Weil group of \mathbb{Q}_p. Our notion of ordinariness for determinants begins, like the analogous notion for representations, with the existence of certain additional structures. For representations, it is the existence of a weight and filtration. For a determinant it is:

Definition 2.2.1. Let B be a \mathbb{Z}_p-algebra. Let n be a positive integer, and $w := (w_1, \ldots, w_n)$ be a sequence of non-decreasing integers. A B-valued, ordinary determinant of degree n, weight w, and local type (χ_1, \ldots, χ_n) is a pair $(D, (\chi_1, \ldots, \chi_n))$ consisting of:

1. a continuous B-valued determinant $D : B[G\mathbb{Q}] \to B$ of degree n,
2. an ordered collection (χ_1, \ldots, χ_n) of characters $\chi_i : W_p \to B^\times$,

such that:

1. $\chi_i|_{I_p} = e^{w_i}$,
2. for all $g \in W_p$ the characteristic polynomial of g is:

$$P_{D,g}(X) = \prod_{i=1}^n (1 - \chi_i(g)X),$$

3. for each positive integer $i \leq n$, sequence of elements $g_1 \ldots g_i \in W_p$, and $x \in B[G\mathbb{Q}]$:

$$c_j((g_i - \chi_i(g_i))(g_{i-1} - \chi_{i-1}(g_{i-1})) \cdots (g_1 - \chi_1(g_1))x) = 0,$$

if $j > n - i$.

We say a determinant is ordinary if those additional structures exist over a faithful extension of scalars. That is:

Definition 2.2.2. Let A be a \mathbb{Z}_p-algebra. Let d be a positive integer and $w := (w_1, \ldots, w_n)$ be a sequence of non-decreasing integers. An A-valued determinant $D : A[G\mathbb{Q}] \to A$ of degree d is called an ordinary determinant if there exists a faithful A-algebra B and an ordered collection (χ_1, \ldots, χ_n) of characters $\chi_i : W_p \to B^\times$, such that

$$(D : B[G\mathbb{Q}] \to B, (\chi_1, \ldots, \chi_n))$$

is an ordinary determinant. We say that B realizes an ordinary filtration for D of weight (w_1, \ldots, w_n) and local type (χ_1, \ldots, χ_n).

Like the notion of unramifiedness for determinants, our definition of ordinariness for determinants is not local, i.e. does not solely depend on the determinant restricted to a decomposition group at p.

We note that the notion of ordinariness with a local type is functorial. If $D : B[G\mathbb{Q}] \to B$ is a determinant of weight w with local type (χ_1, \ldots, χ_n) and $\phi : B \to B'$ is a ring map, then D_B is ordinary with local type $(\phi \circ \chi_1, \ldots, \phi \circ \chi_n)$. The naked notion of ordinariness for
determinants does not necessarily persist under base change. It is therefore easier in practice to work with the former notion.

In the discussion above, we saw that every ordinary representation gives rise to an ordinary determinant of the same weight. In the next theorem, we show the converse is true.

Theorem 2.2.3. Let \(w := (w_1, \ldots, w_n) \) be a non-decreasing sequence of integers. The map which associates a determinant to a representation induces a bijection from the set of isomorphism classes of weight \(w \) ordinary, semi-simple \(n \)-dimensional representations of \(G_\mathbb{Q} \) to the set ordinary determinants \(D : \mathbb{Q}_p[G_\mathbb{Q}] \to \mathbb{Q}_p \) of degree \(n \) and weight \(w \).

Proof. By [Che14, Theorem 12.1], one knows that the map which associates a determinant to a representation induces a bijection from the set of isomorphism classes of \(n \)-dimensional, semi-simple representations of \(G_\mathbb{Q} \) over \(\mathbb{Q}_p \) to the set of degree \(n \), determinants \(D : \mathbb{Q}_p[G_\mathbb{Q}] \to \mathbb{Q}_p \).

What remains to be shown is that if a determinant associated to a representation is ordinary of weight \(w \), then that representation is ordinary of weight \(w \). As the weight of an ordinary representation is an invariant of the local determinant at \(p \) (which by assumptions [1] and [2] in the definition of ordinariness necessarily has weight \(w \)), it suffices to show that \(V \) is ordinary of some weight.

Let \(V \) be a \(n \)-dimensional, semi-simple representation of \(G_\mathbb{Q} \), whose associated determinant \(D \) is ordinary. By definition, there exists a faithful \(\mathbb{Q}_p \)-algebra \(B \) that realizes an ordinary filtration for \(D \). Let \((w_1, \ldots, w_n) \) be a weight and \((\chi_1, \ldots, \chi_n) \) be a local type for this extension. Let \(B^{\min} \) be the \(A \)-algebra generated by the values of \(\chi_1(g), \ldots, \chi_n(g) \) as \(g \) ranges over the elements \(g \in W_p \). Then \(B^{\min} \) realizes an ordinary filtration for \(D \) of local type \((\chi_1, \ldots, \chi_n) \). As the image of \(I_p \) under \(\chi_i \) lies in \(\mathbb{Z}_p \), the ring \(B^{\min} \) is generated as an algebra by the images of any Frobenius element at \(p \) under \(\chi_1, \ldots, \chi_n \). In particular, \(B^{\min} \) is a finite type \(A \)-algebra. It follows that there is a ring theoretic section of the algebra map \(\mathbb{Q}_p \to B^{\min} \). By post-composing the characters \((\chi_1, \ldots, \chi_n) \) with such a section, we observe that \(\mathbb{Q}_p \) itself realizes an ordinary filtration for \(D \). Hence, we may assume \(B = \mathbb{Q}_p \).

We claim each of the characters \(\chi_i : W_p \to \mathbb{Q}_p^\times \) extend to a continuous character of \(G_\mathbb{Q} \). Consider the set \(P \) consisting of characteristic polynomials \(P_{D,g}(X) \) where \(g \in G_\mathbb{Q} \). As \(D \) is continuous, the set of valuations of the coefficients of polynomials in \(P \) is finite. Hence, the set \(\text{Val} \) of valuations of roots of polynomials in \(P \) is finite. For each \(i \) and each of the elements \(g \in W_p \), the value \(\chi_i(g)^{-1} \) is a root of \(P_{D,g}(X) \), and therefore the valuation \(\chi_i(g) \) lies in \(\text{Val} \). On the other hand, the image of \(\chi_i(W_p) \) under the valuation map is a subgroup of \(\mathbb{Q} \). We conclude \(|\chi_i(g)| = 1 \) for all \(g \in W_p \). This implies \(\chi_i \) extends to a continuous character of \(G_\mathbb{Q} \). We denote the unique extension of \(\chi_i : W_p \to \mathbb{Q}_p^\times \) to \(G_\mathbb{Q} \) by the same symbol.

Finally, we show \(V \) admits an ordinary flag. For each sequence of elements \(g_{n-1}, \ldots, g_1 \in W_p \), consider the subspace:

\[
V(g_{n-1}, \ldots, g_1) := (g_{n-1} - \chi_{n-1}(g_{n-1})) \cdots (g_1 - \chi(g_1))V.
\]

By assumption, the characteristic polynomial of

\[
(g_n - \chi_n(g_n))(g_{n-1} - \chi_{n-1}(g_{n-1})) \cdots (g_1 - \chi(g_1))X
\]

is identically 1 for all \(X \in \mathbb{Q}_p[G_\mathbb{Q}] \). As \(V \) is semi-simple, it follows the element

\[
(g_n - \chi_n(g_n))(g_{n-1} - \chi_{n-1}(g_{n-1})) \cdots (g_1 - \chi(g_1))
\]

acts on \(V \) by 0, and so \(V(g_{n-1}, \ldots, g_1) \) is contained in the \(\chi_n \) isotopic subspace \(V^{\chi_n} \subseteq V \). Consequently, the quotient \(V/V^{\chi_n} \) is annihilated by \((g_{n-1} - \chi_{n-1}(g_{n-1})) \cdots (g_1 - \chi(g_1)) \).
Proceeding inductively one constructs a filtration of V whose graded pieces are isomorphic to $(\overline{Q}_p(\chi_i))^k_i$ for some sequence of exponents k_i. As the weights of the characters χ_1, \ldots, χ_n are increasing, this filtration refines to an ordinary flag for V, and hence V is ordinary.

Let $D : A[G_Q] \to A$ be a determinant of degree n and $w = (w_1, \ldots, w_n)$ be a nondecreasing sequence of integers. Our previous theorem shows that any ordinary \overline{Q}_p-point of Spec(A) arises from an ordinary representation. Next we show that there is a unique, maximal, closed subscheme of Spec(A) over which D is ordinary of weight w. We call this subscheme the ordinary locus of Spec(A). If there is no A-algebra A' such that $D_{A'}$ is ordinary of weight w, this locus is empty. Therefore, we assume there exists such an A-algebra A', and construct a quotient $A_{\text{ord}, w}$ of A, which is the initial A-algebra such that the base change of D to $A_{\text{ord}, w}$ is ordinary of weight w.

Given a determinant D', to exhibit that D' is ordinary, one must find a faithful extension of scalars which realizes an ordinary filtration. Specifically, one must find a local type, i.e. a sequence of characters (χ_1, \ldots, χ_n) of W_p valued in the scalar extension, which satisfy certain compatibilities with that determinant. In the case that such a sequence exists, the restriction of (χ_1, \ldots, χ_n) to the inertia group at p is determined by the weight. Hence, one may specify the characters uniquely by specifying the values $\chi_1(\phi), \ldots, \chi_n(\phi)$ for some choice of Frobenius element ϕ at p. Fix an element $\phi \in G_Q$ such that ϕ is a Frobenius element at p and $\epsilon(\phi) = 1$. Since D' is ordinary, the characteristic polynomial $P_{D', \phi}(X)$ of ϕ is equal to $\prod_{i=1}^n (1 - \chi_i(\phi)X)$. To construct $A_{\text{ord}, w}$, we will consider the finite, flat cover Spec(A_{ϕ}) of Spec(A), which parameterizes complete, ordered sets of zeros (r_1, \ldots, r_n) for the classically normalized characteristic polynomial $X^n P_{D', \phi}(X^{-1})$. For each i, there is a unique unramified character $\chi(r_i)$ of G_{Q_p} valued in A_{ϕ}, which sends ϕ to r_i. Given such characters, one may cut out from Spec(A_{ϕ}) a maximal, closed subscheme Spec($A_{\text{ord}, w}$) over which D is ordinary of weight w, and an ordinary filtration is realized with local type $(\chi(r_1)e^{w_1}, \ldots, \chi(r_n)e^{w_n})$. We conclude the construction by showing that the scheme-theoretic image of Spec($A_{\text{ord}, w}$) in Spec(A) is the ordinary locus.

We now construct $A_{\text{ord}, w}$ in earnest. The characteristic polynomial of ϕ under D equals:

$$P_{D, \phi}(X) = 1 + \sum_{i=1}^n (-1)^i c_i(\phi) X^i,$$

where each coefficient $c_i(\phi) \in A$. Let $e_i(r_1, \ldots, r_n)$ be the i-th symmetric function of degree d in the indeterminants r_1, \ldots, r_n. Explicitly,

$$e_i(r_1, \ldots, r_n) := \sum_{S \subseteq \{1, \ldots, n\}, |S| = i} \prod_{i \in S} r_i \in A[r_1, \ldots, r_n].$$

Define

$$A_{\phi} := A[r_1, \ldots, r_n]/(c_i(\phi) - e_i(r_1, \ldots, r_n) : 1 \leq i \leq n).$$

By the fundamental theorem of symmetric polynomials, the ring A_{ϕ} is a free A-algebra of degree $n!$. The monomials $r_1^{e_1} \cdots r_n^{e_n}$ with $0 \leq e_i < i$ constitute an A-basis for A_{ϕ}.

For $g \in W_p$, we denote by $|g| \in \mathbb{Z}$ the unique power such that $g \equiv \phi^{|g|} \text{ mod } I_p$. Define $A_{\phi, w}$ to be the quotient of A_{ϕ} obtained by imposing that for all $g \in W_p$ and $i \in \{1, \ldots, n\}$,

$$c_i(g) = e_i(r_1^{|g|} \epsilon(g)^{w_1}, \ldots, r_n^{|g|} \epsilon(g)^{w_n}),$$

(2.3)
and for each $i \leq n$ and every sequence of elements $g_1, \ldots, g_i \in W_p$ and element $x \in A_{\phi}[G_Q]$, the coefficients
\begin{equation}
(2.4) \quad c_j((g_i - r_1^{[g_i]} \epsilon(x)^{w_1}),(g_i - r_1^{[g_i - 1]} \epsilon(x)^{w_1 - 1}) \cdots (g_1 - r_1^{[g_1]} \epsilon(x)^{w_1})x) = 0
\end{equation}
for all $j > n - i$. Define $A_{\phi}^{\text{ord},w}$ to be the image of A in $A_{\phi}^{\text{ord},w}$.

One observes the following:

Essentially by construction, the base change of D to $A_{\phi}^{\text{ord},w}$ is ordinary of weight w. The image of each of the indeterminants r_i in A_{ϕ} is invertible. If $\chi(r_i) : W_p \rightarrow (A_{\phi}^{\text{ord},w})^\times$ is the unramified character which maps ϕ to r_i, one observes that the base change of D to $A_{\phi}^{\text{ord},w}$ is ordinary of weight w with local type $(\chi(r_1)^{e_1}, \ldots, \chi(r_n)^{e_n})$. Since, $A_{\phi}^{\text{ord},w}$ injects into $A_{\phi}^{\text{ord},w}$ the base change of D to the A-algebra $A_{\phi}^{\text{ord},w}$ is ordinary.

The algebra $A_{\phi}^{\text{ord},w}$ represents the functor on A-algebras of "local types of weight w". If B is any A-algebra which is ordinary of weight w and local type $\chi := (\chi_1, \ldots, \chi_n)$, then $(\chi_1(\phi), \ldots, \chi_n(\phi))$ is a complete set of roots for $P_{D,\phi}$. The resulting A-algebra map $f_\chi : A_{\phi} \rightarrow B$ sends r_i to $\chi(r_i)$. This map necessarily factors through $A_{\phi}^{\text{ord},w}$. Since the characters (χ_1, \ldots, χ_n) are determined by their weight and value on ϕ, the map f_χ determines χ. It follows that the set of B-valued local types of weight w is in natural bijection with $\text{Hom}_A(A_{\phi}^{\text{ord},w}, B)$. Given this functorial description, we see $A_{\phi}^{\text{ord},w} = A \otimes_A A_{\phi}^{\text{ord},w}$ for any A-algebra A.

The assignment $A \rightsquigarrow A_{\phi}^{\text{ord},w}$ is an interpolation of the notion of ordinarity of weight w. Any subalgebra of an $A_{\phi}^{\text{ord},w}$-algebra is necessarily ordinary. As $A_{\phi}^{\text{ord},w}$ is finite over $A_{\phi}^{\text{ord},w}$, every geometric point $\pi : A_{\phi}^{\text{ord},w} \rightarrow F$ lifts to a geometric point of $A_{\phi}^{\text{ord},w}$, and hence is ordinary of weight w. Hence, $\text{Spec}(A_{\phi}^{\text{ord},w})$ contains all ordinary points of A.

Conversely, if A is an ordinary A-algebra of weight w, then since $A \otimes_A A_{\phi}^{\text{ord},w} = A_{\phi}^{\text{ord},w}$ the map $A \rightarrow A_{\phi}^{\text{ord},w}$ factors through $A_{\phi}^{\text{ord},w}$. It follows that the assignment $A \rightsquigarrow A_{\phi}^{\text{ord},w}$ is functorial and every geometric point of $A_{\phi}^{\text{ord},w}$ is ordinary.

We record these observations in the following theorem:

Theorem 2.2.4. Let A be a \mathbb{Z}_p-algebra and $D : A[G_Q] \rightarrow A$ be a determinant of degree n. Let $w = (w_1, \ldots, w_n)$ be a nondecreasing sequence of integers.

1. The base change of D to $A_{\phi}^{\text{ord},w}$ is ordinary of weight w.
2. The determinant D is ordinary if and only if $A_{\phi}^{\text{ord},w}$ equals A.
3. If A' is an A-algebra such that the base change of D to A' is ordinary of weight w, then the structure map $st : A \rightarrow A'$ factors through $A_{\phi}^{\text{ord},w}$.
4. The algebra $A_{\phi}^{\text{ord},w}$ represents the set valued functor on A-algebras that assigns to an A-algebra B the set of B-valued local types for D_B of weight w.
5. If B is any $A_{\phi}^{\text{ord},w}$-algebra and $A' \subseteq B$ is an A-subalgebra, then the base change of D to A' is ordinary of weight w.
6. The base change of D to any geometric point of $A_{\phi}^{\text{ord},w}$ is ordinary of weight w.

We remark that if A is a \mathbb{Z}_p-algebra in which $p^n = 0$, and $w_1, w_2 \in \mathbb{Z}$ are two weights that are congruent modulo $(p - 1)p^{n-1}$, then $A_{\phi}^{\text{ord},w_1} = A_{\phi}^{\text{ord},w_2}$. Hence, given any \mathbb{Z}_p-algebra A, a determinant $D : A[G_Q] \rightarrow A$, and a weight w_1, the quotient $A_{\phi}^{\text{ord},w_1}$ is a p-adic limit of
ordinary quotients of arbitrary large integer weights. We will use this observation in section 3 to show that the determinant attach an ordinary determinant valued in the ordinary p-adic Hecke algebra of weight one.

In order for a p-adic representation of $G_{\mathbb{Q}}$ to be unramified at p, it must be ordinary of weight $(0, \ldots, 0)$. Our next theorem shows the same holds for our interpolations of these two properties to determinants. In the next section, we will give a scheme theoretic criterion to determine if a determinant that is ordinary of weight $(0, \ldots, 0)$ is unramified.

Theorem 2.2.5. Let $D : A[G_{\mathbb{Q}}] \to A$ be a determinant which is unramified at p. Then D is ordinary of weight $0 := (0, \ldots, 0)$ if and only if $\text{Spec}(A_{\text{ord}, 0})$ contains the unramified locus $\text{Spec}(A^{\text{un}})$.

Proof. The second statement follows immediately from the first. We show the first holds.

Assume $D : A[G_{\mathbb{Q}}] \to A$ is unramified at p. Let $\chi(r_i) : W_p \to A_{\phi}$ be the unramified character mapping ϕ to r_i. We claim A_{ϕ} realizes an ordinary filtration for D of weight 0 and local type $(\chi(r_1), \ldots, \chi(r_n))$.

Since D is unramified at p, the kernel of D contains $g - 1$ for all $g \in I_p$. This implies, the characteristic polynomial $P_{g, D}(X)$ for $g \in W_p$ and the coefficient

$$c_j((g_1 - \chi(r_1)) \cdots (g_1 - \chi(r_1))m)$$

for all $i, j > 0$ and $g_1, \ldots, g_n \in W_p$ and $m \in A[g_{\mathbb{Q}}]$ only depends on $g, g_1, \ldots, g_n \mod I_p$. Hence, to show D is ordinary it suffices to show

$$P_{\phi^k, D}(X) = \prod (1 - r_i^k X)$$

for all $k \in \mathbb{Z}$, and

$$c_j((\phi^{k_i} - r_i^{k_i}) \cdots (\phi^{k_i} - r_i^{k_i})m) = 0$$

for all $k_1, \ldots, k_i \in \mathbb{Z}$, elements $m \in A[G_{\mathbb{Q}}]$ and $j \geq n - i$.

There is a certain ideal $\text{Rel}_D \subset A$, which we now define, that vanishes if and only if relations 2.5 and 2.6 hold for D. The algebra A_{ϕ} is free over A of rank $n!$ on the basis $\mathcal{B} := (\phi^{k_1} \cdots \phi^{k_n} : 0 \leq k_i < i)$. Using Amistur’s formula, one may expand

$$c_j((\phi^{k_i} - r_i^{k_i}) \cdots (\phi^{k_i} - r_i^{k_i})m) \in A_{\phi}$$

and write it as an A-linear expression on the basis \mathcal{B}. For each $r \in \mathcal{B}$, let $c_r(j, k_1, \ldots, k_i, m) \in A$ be the coefficient of r in this expansion. Let Rel_D be the ideal of A generated by

$$c_i(j, k_1, \ldots, k_i, m) \text{ and } c_i(\phi^k) - e_i(r_1^k, \ldots, r_n^k)$$

for all sequences $k, k_1, \ldots, k_i \in \mathbb{Z}$, integers $i > 0$ and $j > n - i$. The ideal $\text{Rel}_D = 0$ in A if and only if the proposition holds for D. We prove the theorem by showing Rel_D vanishes.

We begin by considering the case in which $F := A$ is an algebraically closed field. In this case, D arises from a genuine representation, and one can argue using matrices. Furthermore, to show $\text{Rel}_D = 0$, it suffices to do so in any of the specializations of $F_{\phi} \to F$, i.e. when r_1, \ldots, r_n are genuine eigenvalues of ϕ. Given a genuine representation, one may put ϕ into a Jordan normal form in which the specializations of r_1, \ldots, r_n appear in that order on the diagonal of ϕ. In particular, this representation is ordinary with local type $(\chi(r_1), \ldots, \chi(r_n))$.

It follows that 2.5 and 2.6 hold and $\text{Rel}_D = 0$ in F.

Given a general determinant $D : A[G_{\mathbb{Q}}] \to A$ which is unramified at p, one may hope to lift D to a determinant \widehat{D} which is unramified at p and is valued in some domain $\widehat{A} \to A$.

Assuming this, one would deduce from the previous paragraph that Rel_D vanishes in the algebraic closure of the fraction field of \hat{A}, and hence that it vanishes in \hat{A}. From this one would deduce Rel_D vanishes in A and prove the theorem. This however will be impossible, as relations in $G_{\hat{Q}}$ may prevent lifts from existing.

Nonetheless, we will deduce the general case from the case of a determinant valued an algebraically closed field. We will use an idea of Francesco Vaccarino: any determinant lifts as relations in $(\text{Vaccarino [Vac08, Theorem 6.1], also see [Che14, pg. 15, Theorem 1.15]).}$)\\n
Assuming this, one would deduce from the previous paragraph that Rel_D vanishes in A and prove the theorem. This however will be impossible, as relations in $G_{\hat{Q}}$ may prevent lifts from existing.

In fact, Vaccarino will remove so many relations that our group will no longer be a group. Let G be any group and X_G be the free non-commutative monoid generated by the symbols x_g for $g \in G$. Denote the free non-commutative algebra on X_G by $\mathbb{Z}\{X_G\}$, and let $F_n(X_G)$ be the polynomial ring over \mathbb{Z} generated by symbols $x(g)_{i,j}$ for $g \in G$ and $i, j \in \{1, \ldots, n\}$. Let $\rho : \mathbb{Z}\{X_G\} \rightarrow M_n(F_n(X_G))$ be the n-dimensional representation which maps $x \mapsto [x(g)_{i,j}]_{i,j}$ and $E_n(X_G)$ be the subring $F_n(X_G)$ generated by characteristic polynomial coefficients of $\rho(w)$ for all $w \in \mathbb{Z}[X_G]$. For any ring A, let $\pi_A : \mathbb{Z}\{X_G\} \rightarrow A[G]$ be the ring homomorphism sending $x_g \rightarrow g$. Vaccarino shows:

Theorem 2.2.6 (Vaccarino [Vac08, Theorem 6.1], also see [Che14, pg. 15, Theorem 1.15]). Let $D : A[G] \rightarrow A$ be a determinant. Then there exists a unique ring homomorphism $\phi_D : E_d(X_G) \rightarrow A$ such that $\phi_D \circ \text{det}(\rho) = D \circ \pi_A$.

We conclude our proof using Vaccarino’s result. In analogy to A_ϕ, one defines an $E_n(X_G)_{x_\phi}$-algebra $E_n(X_G)_{x_\phi}$ by quoting the polynomial ring $E_n(X_G)[r_1, \ldots, r_n]$ by the coefficients of the polynomial

$$\rho(1 - x_g X) - \prod_{i=1}^{n}(1 - r_i X).$$

Then replacing A_ϕ and $E_n(X_G)_{x_\phi}$ in the construction of Rel_D one creates an ideal $\text{Rel}_{\text{det}(\rho)} \subseteq E_n(X_G)$.

The specialization $\phi_D(\text{Rel}_{\text{det}(\rho)}) = \text{Rel}_D$. The argument to that $\text{Rel}_D = 0$ when D is valued in an algebraically closed field, generalizes to shows $\text{Rel}_{\text{det}(\rho)}$ vanishes in the fraction field of the algebraic closure of $F_d(X_G)$. We conclude Rel_D vanishes in A. \qed

Thus, a determinant which is unramified at p is ordinary of weight 0. The converse is not true. In the next section, we will consider the question of describing the unramified locus inside the ordinary weight 0 locus, and give a criterion to determine if a degree n determinant is unramified.

2.3. A Criterion for Unramifiedness. To motivate our criterion for unramifiedness, consider the problem of determining if an n-dimensional, p-distinguished $G_{\hat{Q}}$-representation V/\overline{Q}_p is unramified at p. For such a representation, each distinct ordinary flag on V gives rise to a distinct complete ordering of the n eigenvalues of ϕ. The representation V is unramified if and only if every ordering of the eigenvalues of ϕ can be realized by an ordinary flag. Hence, a p-distinguished representation is unramified if and only if it admits at least $n!$ distinct ordinary flags.

\footnote{An n-dimensional $G_{\hat{Q}}$-representation V defined over an algebraically closed field \mathbb{F} is called p-distinguished if ϕ acts with n-distinct eigenvalues}
For a determinant $D : A[G_{\mathbb{Q}}] \to A$, the scheme $\text{Spec}(A_{\phi}^{\text{ord,0}})$ parameterizes complete, ordered sets of zeros of the characteristic polynomial $P_{D,\phi}(X)$ which interpolate between those orderings that arise from ordinary flags of weight 0. If x is a p-distinguished geometric point of $\text{Spec}(A)$, then the condition that V_x admits at least $n!$ distinct ordinary flags is equivalent to the fiber of $\text{Spec}(A_{\phi}^{\text{ord,0}})$ above x being at least $n!$-dimensional. We show that this numerical criterion for unramifiedness generalizes to all determinants.

Theorem 2.3.1 (Numerical Criterion for Unramifiedness). A determinant $D : A[G_{\mathbb{Q}}] \to A$ of degree n is unramified if and only if it is ordinary of weight 0 and the A-algebra $A_{\phi}^{\text{ord,0}}$ admits an A-module quotient which is free over A of finite rank equal to $n!$. In this case, we will have that $A_{\phi} \cong A_{\phi}^{\text{ord,0}}$ is free of rank $n!$.

As suggested in Remark 3.22 of [CG], the main reason why one might expect this theorem to be true is that an ordinary representation should be unramified if and only if it is ordinary for every possible ordering of the eigenvalues of Frobenius.

We make the following definition:

Definition 2.3.2. Let $D : A[G_{\mathbb{Q}}] \to A$ be a determinant of degree n. Let $0 := (0, \ldots, 0)$. If B is an A-algebra, define $B_{\phi} := B \otimes_A A_{\phi}$ and $B_{\phi}^{\text{ord,0}} := B \otimes_A A_{\phi}^{\text{ord,0}}$. We say the determinant D_B is split of weight 0 if the induced map $B_{\phi} \to B_{\phi}^{\text{ord,0}}$ is an isomorphism.

We remark that for an A-algebra B, the rings B_{ϕ} and $B_{\phi}^{\text{ord,0}}$ are naturally isomorphic to those of the same names attached to the determinant D_B.

We claim that the base change of D to an arbitrary A-algebra is split of weight 0 if and only if it is unramified at p. Since there is a universal unramified A-algebra, such an equivalence would dictate that there must exist a universal A-algebra which is split of weight 0. This is the first theorem of this section.

Theorem 2.3.3. Let $D : A[G_{\mathbb{Q}}] \to A$ be a determinant of degree n. There exists an A-algebra A^{split} such that, given an A-algebra B, the determinant D_B is split weight 0 if any only if, the structure map $A \to B$ factors through A^{split}.

Proof. The A-algebra A_{ϕ} is a free the A-basis $B := (r_{e_1}^{e_1} \cdot \ldots \cdot r_{e_n}^{e_n} : 0 \leq e_i < i)$. For each multi-index $I = (e_1, \ldots, e_n)$ with $0 \leq e_i < i$, let $\pi_I : A_{\phi} \to A$ be the projection operator which maps an element $x \in A_{\phi}$ to the coefficient of $r_i^{e_1} \cdot \ldots \cdot r_i^{e_n}$ in the unique A-linear expansion of x in terms of B. Define A^{split} to be the quotient of A by the ideal generated by the image of the kernel $\ker(A_{\phi} \to A_{\phi}^{\text{ord,0}})$ under the various projection maps π_I, as I runs over the set of multi-indices $I = (e_1, \ldots, e_n)$ with $0 \leq e_i < i$. An A-algebra B is split of weight 0 if and only if the image of $B \otimes_A \ker(A_{\phi} \to A_{\phi}^{\text{ord,0}})$ in $B_{\phi} = B \otimes_A A_{\phi}$ is the zero ideal. As $B_{\phi} = B \otimes_A A_{\phi}$ is a free B-algebra on $1 \otimes B$, it follows B is split of weight 0 if and only if the structure map $A \to B$ factors through A^{split}. \hfill \square

By Theorem 2.2.5 if a determinant $D : A[G_{\mathbb{Q}}] \to A$ is unramified at p, then it is ordinary of weight 0. To prove this, we showed that an ordinary filtration was realized over A_{ϕ}. Hence, the natural map $A_{\phi} \to A_{\phi}^{\text{ord,0}}$ is an isomorphism. In the parlance of this section: determinants that are unramified at p are split of weight 0. Applying this to the universal case, it follows that there is a natural surjective map $A^{\text{split}} \to A^{\text{un}}$. Our next theorem shows that this map is an isomorphism. Consequently, an A-valued determinant is split weight 0 if and only if it is unramified at p.

Theorem 2.3.4. Let $D : A[G_{Q}] \to A$ be a determinant of degree n, then the natural map $A^{\text{split}} \to A^{\text{un}}$ is an isomorphism.

Proof. To show that the natural map $A^{\text{split}} \to A^{\text{un}}$ is an isomorphism it suffices to show that the base change of D to A^{split} is unramified at p, i.e. that the element $g-1 \in \ker(D_{A^{\text{split}}})$ for all $g \in I_{p}$. As the statement of this theorem and its proof only depend on the base change of D to A^{split}, we will assume without loss of generality that $D = A^{\text{split}}$.

By Lemma 2.1.2, an element $x \in A[G_{Q}]$ lies in the kernel of the determinant D if and only if for all positive integers $i \leq n$ and all $m \in A[G_{Q}]$, the characteristic polynomial coefficient $c_{i}(x_{m})$ vanishes. For each $i \leq n$, define $Z_{i} \subset A[G_{Q}]$ to be the subset:

$$Z_{i} := \{ x \in A[G_{Q}] : c_{j}(x_{m}) = 0 \text{ for all } j \leq i \text{ and } m \in A[G_{Q}] \}.$$

The set Z_{i} is a two sided ideal of $A[G_{Q}]$; it being additively closed is a consequence of Amis-tur’s formula (formula 2.1), and it being closed under multiplication by arbitrary elements of $A[G_{Q}]$ is a consequence of the identity $P_{D,x_{m}}(X) = P_{D,x_{m}}(X)$, as claimed and shown in the proof of Theorem 2.1.2. The ideal $Z_{n} = \ker(D)$. Define $Z_{0} = A[G_{Q}]$. To prove the proposition, we will show inductively that $g-1 \notin Z_{i}$ for each i.

Let $i < n$ and $g \in I_{p}$. Assume $g-1 \in Z_{i}$. We wish to show $g-1 \in Z_{i+1}$, i.e. that if $m \in A[G_{Q}]$, then the coefficient $c_{i+1}((g-1)m) = 0$. To do this, we will show that $c_{i+1}((g-1)m) \in A$ occurs as a coefficient in an A-linear dependence between a set of A-linearly independent elements in A_{ϕ}. Consider the element:

$$x_{i} := (\phi - r_{n-i})(\phi - r_{n-i-1}) \cdots (\phi - r_{2})(g-1) = \sum_{I \subseteq \{2, \ldots, n-i \}} \phi^{(n-1)-|I|}(g-1) \prod_{i \in I} r_{i}$$

in $A_{\phi}[G_{Q}]$. By assumption $A_{\phi} = A_{\phi}^{\text{ord},0}$, and hence $c_{i+1}(x_{i}m) = 0$ by relation 2.6. On the other hand, one may expand $c_{i+1}(x_{i}m)$ using Amis-tur’s formula (formula 2.1) in terms of the alphabet

$$X := \left(\phi^{(n-1)-|I|}(g-1)m \prod_{i \in I} r_{i} : I \subseteq \{2, \ldots, n-i \} \right).$$

Because $X \subset Z_{i}$, all terms in Amis-tur’s formula vanish, except possibly those associated to the words x^{i+1} for $x \in X$. Consequently, one observes:

$$c_{i+1}(x_{i}m) = \sum_{I \subseteq \{2, \ldots, n-i \}} \left(c_{i+1}(\phi^{(n-1)-|I|}(g-1)m) \prod_{i \in I} r_{i}^{i+1} \right).$$

Each of the coefficients $c_{i+1}(\phi^{(n-1)-|I|}(g-1)m)$ are elements of A, and since A_{ϕ} is a free A-algebra on the basis $B' := (r^{2}_{2} \cdots r^{e_{n}}_{n} : 0 \leq e_{j} < n-j+1)$, we conclude that all such coefficients must vanish. In particular, the coefficient of 1, which is $c_{i+1}((g-1)m)$, equals 0.

Our numerical criterion for unramifiedness follows immediately.

Proof of Theorem 2.3.1. By previous theorem, to check if a determinant $D : A[G_{Q}] \to A$ is unramified at p, it suffices check that the quotient map $A_{\phi} \to A_{\phi}^{\text{ord},0}$ is an isomorphism. The former algebra is free over A of rank $n!$, and the latter, by assumption, admits an A-module
quotient which is free of the same rank. Hence it suffices to note that a surjection $M \to N$ of free finitely generated A-modules of the same rank is an isomorphism, which follows from [Mat86], Thm 2.4.

In the next section, we will apply this criterion to study the determinants attached to weight one Hecke algebras.

3. Application: Weight-One Modular Determinants Are Unramified at p

In this section, we apply our criterion for unramifiedness to the study of determinants attached to modular Hecke algebras. Let $N \geq 5$ be a positive integer prime to p. Let $X_1(N)$ be the modular curve considered as a smooth proper curve over $\text{Spec}(\mathbb{Z}_p)$, and let ω be the pushforward of the relative dualizing sheaf of the universal elliptic curve $\mathcal{E}/X_1(N)$. Let T_1 be the \mathbb{Z}_p-subalgebra of $\text{End}_{\mathbb{Z}_p}(H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p))$ generated by Hecke operators T_n and $\langle n \rangle$ for all n prime to N. Our goal in this section will be to attach a determinant $D : T_1[G_{\mathbb{Q}}] \to T_1$, which is unramified outside the primes dividing N, including p, such that for all primes l prime to N, the characteristic polynomial of a Frobenius element at l is:

$$P_{D, \text{Frob}_l}(X) = 1 - T_lX + \langle l \rangle X^2.$$

To construct D, we will produce a determinant

$$D_1 : T_{1}^{\text{p-adic}}[G_{\mathbb{Q}}] \to T_{1}^{\text{p-adic}}$$

valued in a weight one p-adic Hecke algebra, which is unramified at all primes l prime to Np, and has the characteristic polynomial

$$P_{D_1, \text{Frob}_l}(X) = 1 - T_lX + \langle l \rangle X^2$$

for any Frobenius element of a prime $l \nmid Np$. The determinant D_1 will be a p-adic limit of determinants attached to classical Hecke algebras in cohomological weight and the determinant D will be the base change of D_1 to T_1. We will then show that our criterion for unramifiedness applies to D, and the characteristic polynomial of Frob_p is as stated. As our constructions require maps between quotients of Hecke algebras of various weights, it will be useful to regard all Hecke algebras as quotients of an abstract Hecke algebra; we denote by T the abstract Hecke algebra over \mathbb{Z}_p generated by Hecke operators T_n and $\langle n \rangle$ for all n prime to pN. The Hecke algebra T_1 is not a priori a quotient of T. This will be a consequence of the existence of the determinant D.

We begin by recalling the definition of the p-adic Hecke algebra of weight 1. Let $X_1(N)^{ss}/\mathbb{F}_p$ denote the subscheme of $X_1(N)_{\mathbb{F}_p}$, which parameterizes supersingular elliptic curves over \mathbb{F}_p with level N-structure. Associated to $X_1(N)$ is a formal scheme $X_1(N)^{fs}$ defined over \mathbb{Z}_p. Let $X_1(N)^{ord}$ be the formal scheme theoretic complement of $X_1(N)^{ss}$ inside $X_1(N)^{fs}$. The global sections of $\omega \otimes \mathbb{Q}_p/\mathbb{Z}_p$ over $X_1(N)^{ord}$ are called $(\mathbb{Q}_p/\mathbb{Z}_p$-valued) p-adic modular forms of weight 1. On $H^0(X_1(N)^{ord}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)$, there is an action of the Hecke algebra T. We denote the closure of the image of T inside $\text{End}_{\mathbb{Z}_p}(H^0(X_1(N)^{ord}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p))$ by $T_{1}^{\text{p-adic}}$.

Theorem 3.0.1. There is a determinant $D_1 : T_{1}^{\text{p-adic}}[G_{\mathbb{Q}}] \to T_{1}^{\text{p-adic}}$ of degree 2, which is unramified at all primes l prime to Np, such that the characteristic polynomial of Frob_l is

$$P_{D_1, \text{Frob}_l}(X) = 1 - T_lX + \langle l \rangle X^2.$$
Proof. For each positive integer k, let T_k be the image of T inside the ring of endomorphisms $\text{End}_{\mathbb{Z}_p}(H^0(X_1(N), \omega^k \otimes \mathbb{Q}_p/\mathbb{Z}_p))$. Multiplication by lifts of appropriate powers of the Hasse invariant gives the usual identification
\begin{equation}
T_1^{p \text{-adic}} = \lim_{\longleftarrow} T_{1+(p-1)p^{k-1}/p^k}.
\end{equation}

If $n > 1$, then T_n is a finite, flat \mathbb{Z}_p-algebra and the base change $T_n \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is a finite étale \mathbb{Q}_p-algebra. The \mathbb{Q}_p-points of T_n are in bijection with the set of classical newforms f over $\overline{\mathbb{Q}}_p$ (not necessarily cuspidal), which arise at levels dividing N. To each such point $\pi : T_n \to \overline{\mathbb{Q}}_p$, there is an associated 2-dimensional $\overline{\mathbb{Q}}_p$-valued $G_\mathbb{Q}$-representation, which is unramified outside the primes dividing Np, such that the characteristic polynomial of Frobenius Frob_l under the associated determinant is:
\[P_{D_n, \text{Frob}_l}(X) = 1 - \pi(T_l)X + \pi(l)^{n-1}X^2. \]

The ring $T_n \otimes \overline{\mathbb{Q}}_p$ is isomorphic to the sum of its $\overline{\mathbb{Q}}_p$-points, and the determinants D_π glue to yield a determinant $D_n : T_n \otimes \overline{\mathbb{Q}}_p[G_\mathbb{Q}] \to T_n \otimes \overline{\mathbb{Q}}_p$. Since the characteristic polynomials of the elements of $G_\mathbb{Q}$ have coefficients valued in $T_n \subseteq T_n \otimes \overline{\mathbb{Q}}_p$, Amistur’s formula implies that the determinant D_n descends to a T_n-valued determinant $D_n : T_n[G_\mathbb{Q}] \to T_n$, which is unramified outside primes dividing Np, such that the characteristic polynomial of Frobenius Frob_l under the associated determinant is:
\[P_{D_n, \text{Frob}_l}(X) = 1 - T_lX + \langle l \rangle^{n-1}X^2. \]

If $n = (p-1)p^{k-1} + 1$, the characteristic polynomial of Frobenius Frob_l under the base change of D_n to $T_n/p^k T_n$ is:
\[P_{D_n, T_n/p^k, \text{Frob}_l}(X) = 1 - T_lX + \langle l \rangle X^2. \]

It follows that this sequence of base changes is a compatible sequence of $T_{1+(p-1)p^{k-1}/p^k}$-valued determinants. Taking the inverse limit, one obtains the desired $T_1^{p \text{-adic}}$-valued determinant.

Restriction yields a T-equivariant injection:
\[H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)) \hookrightarrow H^0(X_1(N)_{\text{ord}}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)). \]

Define D to be the base change of D_1 to T_1 along the resulting map $T_1^{p \text{-adic}} \to T_1$.

We claim D is unramified at p. The proof will use our criterion for unramifiedness. To apply this criterion, we must first show that D ordinary weight $\mathbf{0} := (0,0)$, i.e. that the map $T_1^{p \text{-adic}} \to T_1$ factors through the quotient $(T_1^{p \text{-adic}})_{\text{ord},0}$. Our next theorem will show that the algebras $(T_1^{p \text{-adic}})_{\text{ord},0}$ and $(T_1^{p \text{-adic}})_{\phi}$ act on the space of ordinary $p \text{-adic}$ modular forms of weight 1 in a way which is compatible with the $T_1^{p \text{-adic}}$-action. Using this modular interpretation of these quotients, we will show that D_1 is split of weight $\mathbf{0}$ over $\text{Spec}(T_1)$.

We begin by recalling the definition of the spaces of ordinary modular forms of weight k and the corresponding quotients of T. The theory of the canonical subgroup gives a well defined operator U_p on the space of ordinary modular forms. On the other hand, for weights $k > n$, the Hecke operator T_p modulo p^n coincides with U_p, and hence there is a U_p-equivariant map $H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p) \to \lim H^0(X_1(N), \omega^{1+(p-1)p^{k-1}} \otimes p^{-k} \mathbb{Z}_p/\mathbb{Z}_p)$.

Let $e = \lim_{\longleftarrow} U_p^{n!}$ be Hijikata’s idempotent. Let T_k denotes the action of Hecke algebra (away from Np) on $H^0(X_1(N), \omega^k \otimes \mathbb{Q}_p/\mathbb{Z}_p)$, and let T_k^{ord} and T_k^{ϕ} denote the images of T_k.
and \(T_k[p^\infty] \) respectively on \(eH^0(X_1(N), \omega^k \otimes \mathbb{Q}_p/\mathbb{Z}_p) \). We denote the quotients of \(T_1[p^\infty] \) and \(U_1[p^\infty] \) which act faithfully on \(e(H^0(X_1(N)_{\text{ord}}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)) \) by \(T_1^{\text{Hida}} \) and \(T_1^{\text{Hida}} \), respectively. As previously, we have isomorphisms:

\[
T_1^{\text{Hida}} \cong \varprojlim_{1+k(p-1)p^{k-1}/p^k} T_1^{\text{p-ord}}/p^k, \quad T_1^{\text{Hida}} \cong \varprojlim_{1+k(p-1)p^{k-1}/p^k} \tilde{T}_1^{\text{p-ord}}/p^k.
\]

Theorem 3.0.2. The base change of \(D_1 \) to \(T_1^{\text{Hida}} \) is ordinary of weight \((0, 0) \). An ordinary filtration for \((D_1)_{T_1^{\text{Hida}}} \) can be realized over \(T_1^{\text{Hida}} \), and chosen so that the induced map

\[
\left(T_1^{\text{Hida}}\right)^{\text{ord}, 0}_{\phi} \to T_1^{\text{Hida}}
\]

maps \(r_1 \) to \(U_p \).

Proof. Like the construction of \(D_1 \), this fact will be deduced from the structure of the Galois representations attached to modular eigenforms in high weight. Let \(n > 1 \). In the proof of Theorem 3.0.1, we constructed a determinant \(D_n : T_k[G_{\mathbb{Q}}] \to T_n \), which was unramified outside \(Np \), such that the Frobenius element for any \(l \) prime to \(Np \) equaled:

\[
P_{D_n, \text{Frob}_{l}}(X) = 1 - T_lX + (l)^{n-1}X^2.
\]

The base change of \(D_1 \) to \(T_1^{\text{Hida}} \) is the inverse limit of the base change of the determinants \(D_{1+(p-1)p^{k-1}} \) modulo \(p^k \) via the isomorphism in equation 3.2. We claim:

Claim 2. The base change of \(D_n \) to \(T_n^{\text{p-ord}} \) is ordinary of weight \((0, n-1)\), and an ordinary filtration for \((D_n)_{T_n^{\text{p-ord}}} \) can be realized over \(T_n^{\text{p-ord}} \), so that the induced map

\[
\left(T_n^{\text{p-ord}}\right)^{\text{ord}, w}_{\phi} \to T_n^{\text{p-ord}}
\]

maps \(r_1 \) to \(U_p \), where \(w = (0, n-1) \). If \(n-1 \equiv 0 \mod p^{k-1}(p-1) \), then the base change of \(D_n \) to \(T_n^{\text{p-ord}}/p^n \) is ordinary of weight \(0 \), and the corresponding ordinary filtration as above gives rise to a map

\[
\left(T_n^{\text{p-ord}}/p^k\right)^{\text{ord}, 0}_{\phi} \to T_n^{\text{p-ord}}/p^k
\]

sending \(r_1 \) to \(U_p \).

Assuming this claim, one sees from equation 3.2 that the ordinary quotient \((T_1^{\text{Hida}})^{\text{ord}, 0} = T_1^{\text{Hida}} \), and hence \(D_1 \) is ordinary of weight \(0 \) over \(T_1^{\text{Hida}} \). Furthermore, it follows that an ordinary filtration for \(D_1 \) is realized over \(T_1^{\text{Hida}} \), and can be chosen so that the induced map

\[
\left(T_1^{\text{Hida}}\right)^{\text{ord}, 0}_{\phi} \to T_1^{\text{Hida}}
\]

maps \(r_1 \) to \(U_p \).

We prove claim 2. Consider the base change of \(D_k \) to \(T_k^{\text{p-ord}} \otimes \bar{\mathbb{Q}}_p \). We claim that this base change is ordinary of weight \((0, k-1)\). Since, the \(\bar{\mathbb{Q}}_p \)-algebra \(T_k^{\text{p-ord}} \otimes \bar{\mathbb{Q}}_p \) is étale, it is enough to show this after base changing \(D_1 \) to any \(\bar{\mathbb{Q}}_p \)-point of \(T_k^{\text{p-ord}} \otimes \bar{\mathbb{Q}}_p \). The set of such points is in bijection with ordinary Hecke eigenforms of level dividing \(N \). By a theorem of Deligne, the Galois representations attached to such forms are ordinary in the classical sense of weight \((0, k-1)\), and \(\phi \) acts on the unramified quotient of an ordinary flag by the image of \(U_p \) in \(\bar{\mathbb{Q}}_p \). It follows that the associated determinants are ordinary of weight \((0, k-1)\), and the induced
map $(\widetilde{T}_k^{p\text{-ord}}, (0, k-1)) \to \mathbb{Q}_p$ maps r_1 to the image of U_p. Gluing these determinants together, we obtain that D_k is ordinary of weight $(0, k - 1)$ over $\widetilde{T}_k^{p\text{-ord}} \otimes \mathbb{Q}_p$, and an ordinary filtration is realized so that the induced map

$$\tag{3.3} (\widetilde{T}_k^{p\text{-ord}}, (0, k-1)) \to \widetilde{T}_k^{p\text{-ord}} \otimes \mathbb{Q}_p$$

carries r_1 to U_p. Since the $T_k^{p\text{-ord}}$-algebra $\widetilde{T}_k^{p\text{-ord}} \otimes \mathbb{Q}_p$ is faithful, we conclude D_k is ordinary over $T_k^{p\text{-ord}}$. Finally, as $(T_k)_{\phi}$ is generated over T_k by r_1, the map in equation (3.3) has image contained in (in fact equal to) the Hecke algebra $\widetilde{T}_k^{p\text{-ord}}$. These constructions are compatible with reduction modulo p^k, establishing the second claim. □

Theorem 3.0.3. The map $T_1^{p\text{-adic}} \to T_1$ factors through T_1^{Hida}. The T_1-module $T_1 \otimes_{T_1^{\text{Hida}}} T_1^{\text{Hida}}$ is free of rank 2.

Proof. The argument here is essentially the same as the doubling lemma (Lemma 3.15) of [CG], so we just sketch the details. The space of weight one modular forms embeds T-equivariantly into the space weight one p-adic modular forms via the restriction map:

$$\text{res} : H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p) \to H^0(X_1(N)^{\text{ord}}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p).$$

The map res preserves q-expansions. To show that the map $T_1^{p\text{-adic}} \to T_1$ factors through T_1^{Hida}, we must show that U_p acts invertibly on the smallest U_p-stable subspace containing the image of res. Consider the map

$$V := (p)^{-1} \circ (U_p \circ \text{res} - \text{res} \circ T_p).$$

The map V is T-equivariant and maps a form with q-expansion $f(q) \in \mathbb{Q}_p/\mathbb{Z}_p[[q]]$ to $f(q^p)$. By a theorem of Katz, there are no forms $f \in H^0(X, \omega \otimes \mathbb{F}_p)$ with q-expansion $f(q) \in \mathbb{F}_p[[q^p]]$, and hence there are no pair of forms $f, g \in H^0(X, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)$ such that $\text{res}f = Vg$. It follows the sum

$$\text{res} \oplus V : H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)^2 \to H^0(X_1(N)^{\text{ord}}, \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p).$$

is injective.

By a computation on q-expansions (for example), one observes that $U_p V = \text{res}$. By definition,

$$U_p \circ \text{res} = \text{res} \circ T_p - V(p).$$

It follows the image of $\text{res} \oplus V$ is $T[U_p]$-stable, and upon identifying $H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)^2$ with its image under $\text{res} \oplus V$, the Hecke operator U_p acts on the image of $\text{res} \oplus V$ by:

$$\tag{3.4} U_p = \begin{pmatrix} T_p & 1 \\ \langle p \rangle & 0 \end{pmatrix} \in GL_2(T_1).$$

We conclude U_p acts invertibly on the image of $\text{res} \circ V$ and commutes with the diagonal T_1-action. Hence the map $T_1^{p\text{-adic}} \to T_1$ factors through T_1^{Hida}.

Given the matrix expression for U_p, the action of the polynomial ring $T_1[U_p]$ on the image of $\text{res} \oplus V$ factors through $T_1[U_p]/U_p^2 - T_p U_p + \langle p \rangle$. We claim this quotient acts faithfully. Any further relation, would imply that there exists operators $A, B \in T_1$ such that

$$A + BU_p = \begin{pmatrix} A + BT_p & B \\ \langle p \rangle B & A \end{pmatrix}.$$
acts as 0 on $H^0(X_1(N), \omega \otimes \mathbb{Q}_p/\mathbb{Z}_p)^2$. An examination of the second column implies that $A = 0$ and $B = 0$, and hence no further relations exist.

Because the degree two determinant D_1 is ordinary of weight 0 over T^{Hida}_1, and there is a surjective map $(T^{Hida}_1)_{\phi}^{ord,0} \to T^{Hida}_1$, the T-module $T_1 \otimes_{T^{Hida}_1} T^{Hida}_1$ is a quotient of the free rank two T-module $T_1 \otimes_{T^{Hida}_1} (T^{Hida}_1)_{\phi}$. On the other hand, $T_1 \otimes_{T^{Hida}_1} T^{Hida}_1$ acts on the image of $\text{res} \oplus V$ through the faithful action of the free T-module $T_1[U_p]/U_p^2 - T_p U_p + \langle p \rangle$ of rank two. We conclude $T_1 \otimes_{T^{Hida}_1} T^{Hida}_1$ is free T_1-module of rank 2.

We now have:

Proof of Theorem 3.1. We first show that base change of D_1 to T_1 is unramified at p. By Theorems 3.0.2 and 3.0.3, the base change of D_1 to T^{Hida}_1 and T_1 are both ordinary of weight zero, and hence there are identifications

$$T^{Hida}_1 = \left(T^{Hida}_1 \right)^{\text{ord,0}}, \quad T_1 = \left(T_1 \right)^{\text{ord,0}},$$

where the latter algebra is a quotient of the former. On the other hand, Theorem 3.0.2 also realizes T^{Hida}_1 as a quotient of $(T^{Hida}_1)_{\phi}^{ord,0}$, and hence

$$T_1 \otimes_{T^{Hida}_1} T^{Hida}_1$$

as a quotient of $(T_1)_{\phi}^{ord,0}$. Since the module above is free of rank two by Theorem 3.0.3, it follows that $(T_1)_{\phi}^{ord,0}$ admits a quotient which is free of rank 2. Hence, from Theorem 2.3.1, we deduce that D_1 is unramified at p. Let us now compute the characteristic polynomial of Frob_p. By the compatibility of Theorem 3.0.2, the characteristic polynomial of Frob_p coincides with the characteristic polynomial of U_p. By equation 3.4, this is $X^2 - T_p X + \langle p \rangle$. □

4. Upper Triangular Determinants

If l is a prime exactly dividing N, local-global compatibility dictates that the p-adic Galois representation attached to a classical Hecke eigenform f of weight $k \geq 2$ will be **upper triangular at l** i.e. the p-adic Galois representation $V_{p,f}/\mathbb{Q}_p$ associated f will admit a complete $G_{\mathbb{Q}_p}$-stable flag $0 \subset F_1 V_{p,f} \subset V_{p,f}$. Furthermore, such a flag can be chosen so that the $G_{\mathbb{Q}_p}$ action on the quotient $V_{p,f}/F_1 V_{p,f}$ is unramified and Frob_l acts by multiplication by the eigenvalue of U_l on f. For the determinant attached to a weight one Hecke algebra, an interpolation of this property holds.

Let l prime, \mathcal{O} be the ring of integers in a finite extension of \mathbb{Q}_p, and $\tau_l = (\chi_1, \ldots, \chi_n)$ be an ordered collection of continuous inertial characters $\chi_i^{(0)} : I_l \to \mathcal{O}^\times$. We say a n-dimensional $G_{\mathbb{Q}_p}$-representation V/\mathbb{Q}_p is upper triangular at l if there exists a complete $G_{\mathbb{Q}_p}$-stable flag

$$0 = F_0 V \subset F_1 V \subset \cdots \subset F_n V = V$$

such that I_l acts on $F_i V/F_{i-1}$ through $\chi_i^{(0)}$. Ordinary representations are a special case of upper triangular determinants. The interpolation of ordinarity given in section 2.2 generalizes straight forwardly to an interpolation of upper triangularity.

5For many such modular forms f, this upper–triangular representation will be split. By local–global compatibility, the representation will be non-split if and only if the local component π_l associated to f is an unramified twist of the Steinberg representation, or, equivalently, if f is new at l and the Nebentypus character of f is unramified at l.\[\]
Definition 4.0.1. Let A be a O-algebra. Let $D : A[G_{\bar{Q}}] \to A$ be a determinant of degree n, we say D is upper triangular at l with inertial graded representation τ_l, if there exists a faithful A-algebra B and an ordered collection characters $\chi_1, \ldots, \chi_n : W_l \to B^\times$ such that:

1. $\chi_l|_{\mathfrak{F}} = \chi_l^{(0)}$,
2. for all $g \in W_l$ the characteristic polynomial of g is:

 $$ P_{D,g}(X) = \prod_{i=1}^n (1 - \chi_i(g)X), $$

3. for each positive integer $i \leq n$, sequence of elements $g_1 \ldots g_i \in W_l$, and $x \in B[G_K]$:

 $$ c_j((g_i - \chi_i(g_i))(g_{i-1} - \chi_{i-1}(g_{i-1})) \ldots (g_1 - \chi_1(g_1))x) = 0, $$

if $j > n - i$.

A choice of ordered collection of characters (χ_1, \ldots, χ_n) satisfying the above conditions is called a local graded determinant at l of type $(\chi_1^{(0)}, \ldots, \chi_n^{(0)})$.

Furthermore, each of the propositions of section 2 generalize to upper triangular determinants. In particular, there is a bijection between upper triangular determinants over \bar{Q}_p, and upper triangular representations over \bar{Q}_p which preserves inertial semi-simplifications.

An argument analogous to that used to prove Theorem 3.0.2 shows that if l exactly divides N, then D_l is upper triangular at l. Let $T \subset S$ be the finite set of primes which exactly divide N. Define T_l^{ss} to be the B_p-subalgebra of $\text{End}_{\mathcal{Z}_p}(H^0(X_1(N), \omega^k \otimes \bar{Q}_p/\mathcal{Z}_p))$ generated by the operators U_l for $l \in T$ and the Hecke operators T_n and (n) for all n prime to N. We regard the characteristic polynomial coefficient $c_2 : G_{\bar{Q}} \to A^\times$ of D_1 (the classical determinant) as an A-valued character. We denote the unramified, T_l^{ss}-valued character on $G_{\bar{Q}}$ that maps Frob$_l$ to U_l by $\chi_l(U_l)$. One may show:

Theorem 4.0.2. If l is a prime divides N, then the determinant $D_1 : T_1[G_{\bar{Q}}] \to T_1$ is upper triangular at l with inertial graded representation $(1, c_2)$. A $G_{\bar{Q}}$-stable filtration with local type $(\chi_l(U_l), \chi_l(U_l)^{-1}c_2)$ can be realized over T_l^{ss}.

Suppose that N is square-free, and $\bar{p} : G_{\bar{Q}} \to GL_2(\bar{F}_p)$ is an odd, semi-simple, 2-dimensional Galois representation of Serre conductor dividing N which is unramified at p. If \bar{p} is irreducible, then \bar{p} is modular [KW09a, KW09b]. Moreover, by [Gro90, CV92] the corresponding determinant associated to \bar{p} gives rise to a finite collection of \bar{F}_p-points of T_l^{ss}, the exact number depending on a choice of ordering of Frobenius eigenvalues for each prime dividing Np such that \bar{p} is unramified. Alternatively, if \bar{p} is reducible, then \bar{p} gives rise to quotients of T_l^{ss} via weight one Eisenstein series and their associated oldforms of level N. We are naturally led to conjecture that T_l^{ss} is the universal \mathcal{Z}_p-algebra of determinants interpolating these properties.

Theorem 4.0.3. Let N be a square-free positive integer. Let F be the set valued functor on Artinian \mathcal{Z}_p-algebras which assigns to an algebra A the set of all pairs $(D, (\tau_l : l \in T))$ consisting of:

1. a continuous determinant $D : A[G_{\bar{Q}}] \to A$ which is:

 (a) unramified outside the primes dividing N,
 (b) upper triangular at l with inertial graded representation $(1, c_2, p)$ for all $l \mid N$,
 (c) odd, i.e. the characteristic polynomial $P_{D,c}(X) = 1 + X^2$ for any complex conjugation $c \in G_{\bar{Q}}$, and

(2) a tuple of A-valued local graded determinants $τ_1$ at l of type $(1,c_2,D)$ which are compatible with D.

Then F is pro-representable by a semi-local noetherian Z_p-algebra R_{ss}^N.

Proof. For each fixed residual determinant \overline{D} valued in the finite field k there is, by Proposition 3.3 of [Che14], a corresponding local $W(k)$-algebra $R_{2,N,\overline{D}}$ representing continuous determinants of degree 2 deforming \overline{D} which are unramified outside N and valued in p-adically complete $W(k)$-algebras. If k was minimal with respect to \overline{D}, then $R_{2,N,\overline{D}}$ as a Z_p-algebra represents the same functor for \overline{D} and all its conjugates, except now with respect to complete Z_p-algebras. By Serre’s conjecture, we know that $F(\overline{F}_p)$ is a finite set (this accounts for the irreducible determinants, the reducible determinants can be accounted for by class field theory). Let $R_{2,N}$ be the direct sum of $R_{2,N,\overline{D}}$ over each $Gal(\overline{F}_p/F_p)$ conjugacy class of \overline{D} in $F(\overline{F}_p)$.

The proof of the existence of R_{ss}^N is constructive and is analogous to that of $A^{ord,w}_\phi$ (see section 2.2, specifically Theorem 2.2.4). Specifically, R_{ss}^N is defined by imposing relations on the $R_{2,N}$-algebra that (simultaneously) parameterizes complete ordered sets of roots for the characteristic polynomials of some choices of Frobenii elements for the primes $l \in T$. This later ring is finite over $R_{2,N}$, and hence R_{ss}^N is semi-local and Noetherian. □

From Theorem 4.0.2, there is a map $φ_1 : R_{ss}^N \to T_{ss}^1$ which corresponds to the pair consisting of the determinant D_1 and local types $(\chi_l(U_l), \chi_l(U_l)^{-1}c_2)$ for $l \| N$. This map is surjective.

We make the following natural conjecture:

Conjecture 4.0.4. Assume N is a squarefree integer. The map $φ_1 : R_{ss}^N \to T_{ss}^1$ is an isomorphism.

By [Cal15], one knows that if $p > 2$, then the map $φ_1$ is an isomorphism away from the Eisenstein locus.

References

