Lecture 5: Examples of non-elementary amenable groups. The full topological group of Cantor minimal system.

by Kate Juschenko
We begin with basic definitions. The Cantor space is denoted by \(C \), it is characterized up to a homeomorphism as a compact, metrizable, perfect and totally disconnected topological space. The group of all homeomorphisms of the Cantor space is denoted by \(\text{Homeo}(C) \). A Cantor dynamical system \((T, C)\) is the Cantor space together with its homeomorphism \(T \).

Let \(A \) be a finite set, we will call it an alphabet. A basic example of Cantor space is the set of all sequences in \(A \) indexed by integers, \(A^\mathbb{Z} \), and considered with product topology. A sequence \(\{\alpha_i\} \) converges to \(\alpha \) in this space if and only if for all \(n \) there exists \(i_0 \) such that for all \(i \geq i_0 \), we have that \(\alpha_i \) coincides with \(\alpha \) on the interval \([-n, n]\).

The basic example of a Cantor dynamical system is the shift on \(A^\mathbb{Z} \), i.e., the map \(s : A^\mathbb{Z} \to A^\mathbb{Z} \) is defined by

\[
s(x)(i) = x(i + 1)
\]

for all \(x \in A^\mathbb{Z} \).

The system \((T, C)\) is \textit{minimal} if there is no non-trivial closed \(T \)-invariant subset in \(C \). Equivalently, the closure of the orbit of \(T \) of any point \(p \) in \(C \) coincides with \(C \):

\[
\{T^ip : i \in \mathbb{Z}\} = C
\]

One of the basic examples of the Cantor minimal system is the \textit{odometer}, defined by the map \(\sigma : \{0,1\}^\mathbb{N} \to \{0,1\}^\mathbb{N} \):

\[
\sigma(x)(i) = \begin{cases}
0, & \text{if } i < n, \\
1, & \text{if } i = n, \\
x(i), & \text{if } i > n
\end{cases}
\]

where \(n \) is the smallest integer such that \(x(n) = 0 \), and \(\sigma(1) = 0 \). One can verify that the odometer is minimal homeomorphism.

While shift is not minimal, one can construct many Cantor subspaces of \(A^\mathbb{Z} \) on which the action of the shift is minimal. Closed and shift-invariant subsets of \(A^\mathbb{Z} \) are called \textit{subshifts}.

A sequence \(\alpha \in A^\mathbb{Z} \) is \textit{homogeneous}, if for every finite interval \(J \subset \mathbb{Z} \), there exists a constant \(k(J) \), such that the restriction of \(\alpha \) to any interval of the
size \(k(J)\) contains the restriction of \(\alpha\) to \(J\) as a subsequence. In other words, for any interval \(J'\) of the size \(k(J)\), there exist \(t \in \mathbb{Z}\) such that \(J + t \subset J'\) and \(\alpha(s + t) = \alpha(s)\) for every \(s \in J\).

Theorem 0.0.1. Let \(A\) be a finite set, \(T\) be the shift on \(A^\mathbb{Z}\), \(\alpha \in A^\mathbb{Z}\) and \(X = \text{Orb}_T(\alpha)\).

Then the system \((T, X)\) is minimal if and only if \(\alpha\) is homogeneous.

Proof. Assume that the sequence \(\alpha \in A^\mathbb{Z}\) is homogeneous. Let \(\beta \in \overline{\text{Orb}_T(\alpha)}\).

It is suffice to show that \(\alpha \in \overline{\text{Orb}_T(\beta)}\). Fix \(n > 0\), then there exist \(k(n, \alpha)\) such that the restriction of the sequence \(\alpha\) to any interval of the length \(k(n, \alpha)\) contains a copy of the restriction of \(\alpha\) to the interval \([-n, n]\). Thus, since \(\beta \in \overline{\text{Orb}_T(\alpha)}\) then the restriction of \(\beta\) to the interval \([-k(n, \alpha), k(n, \alpha)]\) contains a copy of \(\alpha\) restricted to \([-n, n]\). This implies that there exists a power \(i\) of \(T\) such that \(T^i(\beta)(j) = \alpha(j)\) for all \(j \in [-n, n]\). Since \(n\) is arbitrary large, we can find a sequence \(i_n\) of powers of \(T\), such that \(T^{i_n}(\beta)\) converges to \(\alpha\), therefore \((T, X)\) is minimal.

Assume \((T, X)\) is a minimal system. To reach a contradiction assume that \(\alpha\) is not homogeneous. Then there exists an interval \([-n, n]\), such that for any \(k\) there exists a subinterval of length \(k\) in \(\alpha\), which does not contain the restriction of \(\alpha\) to \([-n, n]\). Thus there exists a sequence \(m_k\) such that the interval \([-k, k]\) of \(T^{m_k}(\alpha)\) does not contain the restriction of \(\alpha\) to \([-n, n]\). Since the space is compact we can find a convergent subsequence in \(T^{m_k}(\alpha)\). Let \(\beta\) be a limit point. Then \(\alpha \notin \overline{\text{Orb}_T(\beta)}\), which gives a contradiction. Hence \(\alpha\) is homogeneous. \(\square\)

The full topological groups. The central object of this Chapter is the full topological group of a Cantor minimal system.

The full topological group of \((T, C)\), denoted by \([[T]]\), is the group of all \(\phi \in \text{Homeo}(C)\) for which there exists a continuous function \(n : C \to \mathbb{Z}\) such that

\[
\phi(x) = T^n(x)x \quad \text{for all } x \in C.
\]

Since \(C\) is compact, the function \(n(\cdot)\) takes only finitely many values. Moreover, for every its value \(k\), the set \(n^{-1}(k)\) is clopen. Thus, there exists a finite partition of \(C\) into clopen subsets such that \(n(\cdot)\) is constant on each piece of the partition.
Kakutani-Rokhlin partitions. Let T be a minimal homeomorphism of the Cantor space C, we can associate a partition of C as follows.

Let D be a non-empty clopen subset of C. It is easy to check that for every point $p \in C$ the minimality of T implies that the forward orbit $\{T^k p : k \in \mathbb{N}\}$ is dense in C. Define the first return function $t_D : D \to \mathbb{N}$:

$$t_D(x) = \min(n \in \mathbb{N} : T^n(x) \in D).$$

Since $t_D^{-1}[0, n] = T^{-n}(D)$, it follows that t_D is continuous. Thus we can find natural numbers k_1, \ldots, k_N and a partition $D = D_1 \sqcup D_2 \sqcup \ldots \sqcup D_N$ into clopen subsets, such that t_D restricted to D_i is equal to k_i for all $1 \leq i \leq N$.

This gives a decomposition of C, called Kakutani-Rokhlin partition:

$$C = (D_1 \sqcup T(D_1) \sqcup \ldots \sqcup T^{k_1}(D_1)) \sqcup \ldots \sqcup (D_N \sqcup T(D_N) \sqcup \ldots \sqcup T^{k_N}(D_N)).$$

The family $D_i \sqcup T(D_i) \sqcup \ldots \sqcup T^{k_i}(D_i)$ is called a tower over D_i. The base of the tower is defined to be D_i and the top of the tower is $T^{k_i}(D_i)$.

Refining of the Kakutani-Rokhlin partitions. Let \mathcal{P} be a finite clopen partition of C and let

$$C = (D_1 \sqcup T(D_1) \sqcup \ldots \sqcup T^{k_1}(D_1)) \sqcup \ldots \sqcup (D_N \sqcup T(D_N) \sqcup \ldots \sqcup T^{k_N}(D_N))$$

be the Kakutani-Rokhlin partition over a clopen set D in C. There exist a refinement of the partition of $D_i = \bigsqcup_{j=1}^{j_i} D_{i,j}$ such that the partition

$$(D_{1,1} \sqcup T(D_{1,1}) \sqcup \ldots \sqcup T^{k_1}(D_{1,1})) \sqcup \ldots \sqcup (D_{1,j_1} \sqcup T(D_{1,j_1}) \sqcup \ldots \sqcup T^{k_1}(D_{1,j_1})) \ldots \ldots \ldots \ldots \ldots (D_{N,1} \sqcup T(D_{N,1}) \sqcup \ldots \sqcup T^{k_N}(D_{N,1})) \sqcup \ldots \sqcup (D_{N,j_N} \sqcup T(D_{N,j_N}) \sqcup \ldots \sqcup T^{k_N}(D_{N,j_N}))$$
of C is a refinement of \mathcal{P}. Indeed, this can be obtained as follows. Assume there exists a clopen set $A \in \mathcal{P}$ such that $A \cap T^i(D_j) \neq \emptyset$ and $A \Delta T^i(D_j) \neq \emptyset$ for some i,j. Then we refine the partition \mathcal{P} by the sets $T^s(T^{-i}(A) \cap D_j)$, $0 \leq s \leq k_j$. Since \mathcal{P} is finite partition this operation is exhaustive.
Bibliography

[34] Elek, G., Monod, N., *On the topological full group of minimal \mathbb{Z}^2-systems*, to appear in Proc. AMS.

